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1 Introduction

Compare professional astronomy today with how it was 50 years ago, and you
will recognise some continuity — but also a number of fundamental changes.
Perhaps the key change is that astronomy has come to rely almost completely
on digital data. Modern telescopes with their CCD cameras produce digital
images and, with the help of suitable dispersive elements, digital astronomical
spectra. An in-depth analysis of a particularly well-studied object will be able
to make use of digital images and spectra taken at different wavelengths —
some taken by ground-based telescopes and some, like extreme ultraviolet or X
rays, which can only be provided by space telescopes.

Furthermore, in-depth studies of selected objects are only part of what
modern astronomy has to offer. We also live in an era of extensive surveys:
large-scale undertakings to photograph, or take spectra of, wider regions of the
sky in a systematic way. These surveys not only produce many images and
spectra, but also extensive catalogues of the objects observed, listing various
of their properties. With such catalogues comes the ability to make statisti-
cal deductions about astronomical objects: If you want to know whether, say,
elliptical galaxies are, in general, brighter than spiral galaxies (to pick an artifi-
cially simple example), you, consult a suitable galaxy catalogue and look up the
brightness values for a large number of elliptical and a large number of spiral
galaxies.

Modern surveys produce considerable amounts of data. For home use, we
have become used to Gigabytes (1 Gigabyte =1000 Megabyte) and Terabytes
(TB; 1 Terabyte = 1000 Gigabyte): a DVD holds 4.7 Gigabytes, and hard
drives now routinely hold a Terabyte or more. The ESO Survey Telescope
VISTA produces about 150 TB worth of data per year, and the Large Synoptic
Survey Telescope (LSST) currently under construction is predicted to produce
500 TB worth of image data per month.

Then, there a increasingly large and detailed simulations. Take the Illus-
trisTNG simulation, which follows the evolution of a large portion of the uni-
verse from shortly after the Big Bang to the present. The smallest but most
detailed of the TNG runs, TNG50, follows the fate of a cube that, in the present
universe, has a side-length of 50 Mpc. Within this volume, matter is represented
by 10 billion point particles representing Dark Matter and 10 billion point par-
ticles representing gas. The two simulation runs TNG300 and TNG100 which
were made available to the public in December 2018 sum up to more than one
Petabyte of data (PB; 1 Petabyte = 1000 Terabytes).

Increase the amount of data, and at some point it will become impractical
to download a complete data set onto your own computer for analysis. This is
where data base operations become important: the data is stored in dedicated
data centres, and is accessible online; in order to work with the data, you use
the Internet to send specific queries (”Give me the list of all galaxies on the
Southern hemisphere which are brighter than X”). In this way, the only data
you download is the data you specifically need for your research. The next step
is not far off: when even those pre-selected data sets become too cumbersome to
handle, researchers can run their analysis programs remotely on the dedicated



servers where the data is stored. Infrastructure to allow just this, notably
JuPyter notebooks, are becoming increasingly common.

All this implies that digital data analysis skills are part of the essential skill
sets of modern astronomers. Some of the skills needed for a given research
project will be very specific, involving custom software to be used for a very
particular kind of analysis, or custom software to be written by the researcher
herself. These special skills must be learned and honed on the job. But there are
other skills which are more elementary and more general. Teaching a selection
of those skills is the purpose of this text. It was originally written for interns
at Haus der Astronomie in Heidelberg, in particular for participants of our
International Summer Internship Program' aimed at students in the final years
of high school, or for students who have just finished high school and are about
to start college.

The text is meant to give a first introduction to working with astronomical
data. It does not cover the more detailed astronomical use cases, but instead
is meant to help students familiarise themselves with the basic tools needed
for such work, and learn to apply basic techniques and tools that are fairly
universal.

1.1 Types of data

When it comes to data from observational astronomy, most data sets we will
be dealing with fall into one of the following categories:

e Image data — in its simplest form, an image is a two-dimensional array
of pixels, where each pixel value denotes a brightness value. In an ordinary
color image, each pixel will have three brightness values, denoting the
contribution from red, green, and blue (RGB). Since astronomers use
many specialist filters beyond these three colors, astronomical ”color”
images can have even more color values per pixel. Astronomical images
usually show a region of the night sky.

e Spectra — simple spectra show us how the energy of the light emitted by
an object is distributed among the different possible wavelengths. Such
simple spectra are one-dimensional: for each wavelength value, we know
the contribution of light from that particular wavelength region.

e Data cubes — think of these as an enhanced version of astronomical
images. An example is a data cube from what is known as integral field
spectroscopy (IFS); such a data cube is like a two-dimensional image, but
now each pixel contains not a brightness value, but a whole spectrum
received from the region of the sky within that pixel. Since we have a
one-dimensional spectrum for each pixel of a two-dimensional image, that
gives us in effect a three-dimensional object: a data cube

e Catalog data — on a higher level of analysis, astronomers make cata-
logues of the properties of different types of astronomical objects. A star

"http://www.haus-der-astronomie.de/en/what-we—do/internships/
summer-internship
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catalog, for instance, could list position, proper motion, parallax, bright-
ness (in various wavelength bands), and effective temperature for each of
a specific selection of stars.

This list is not complete — for instance, in interferometric imaging, when you
are trying to reconstruct an image by combining coherently the measurements of
different telescopes (“aperture synthesis”), your raw data will be time-stamped
data from the single telescopes, and the initial processing will involve cross-
correlating the data between those telescopes. But while the list is not complete,
it should cover the great majority of current astronomical use cases.

We will take a first look at examples for each data type in section 2. These
different data usually come with meta-data, that is, descriptive information
about the data. Astronomical images typically include information about the
circumstances of when and how the image was taken (what telescope, what
time, what exposure time, what pointing?), and about where in the sky the
object in question is located (in the shape of data allowing the user to relate
image pixels to an astronomical coordinate system).

For simulations, the situation is more diverse, but there are two fundamental
schemes:

e N-body simulations — here, matter is represented by point particles.
A point particle can represent different kinds of objects: it could be a
lump of gas, or a star, or a group of a few 10 or 10° stars in a galaxy, or
a lump of dark matter. But every particle has a position in space, and as
the simulation runs, the particle positions change.

e Grid-based simulations — here, space is divided into basic cells, for
instance a space-filling set of small cubes. For each cell, basic properties
(such as density, temperature, quantities of the different types of mat-
ter present) are tracked; those values change as the simulation runs. In
more complex simulations, the grid itself can also change in ways that are
adapted to making the simulation more efficient (“adaptive grid”).

1.2 Types of tools

When it comes to the tools for working with these various kinds of data, we
can distinguish two basic types:

e Application software is software written for a specific set of tasks. In
everyday electronic life, an image viewer allows us to inspect image data,
an image manipulation program such as Adobe Photoshop or The Gimp
allows us to change images in specific ways, and Microsoft Office Excel is
a common way of dealing with catalog-data in the form of spread-sheets.

Good application software has the advantage of being comparatively easy to
operate — in line with modern usage, such software offers you a menu structure
for the selection of task, and a graphical and interactive interface. Also, while
application software performs only a limited selection of tasks, good application



software performs those tasks rather well, having been written by specialists
who have a lot of experience with the kind of task in question.

We will use some application software in the following, namely SAOImage
DS9 for images and TOPCAT for operations involving tables. But in astro-
nomical research, application software is usually not enough. For simple image
operations you might get by with firing up the DS9 software, for instance. But
at some point, sooner rather than later, you will want to do something more
specialised, and more automatised, than application software can provide. Sim-
ilarly, for data analysis. In some of the simplest cases, you might get away with
loading the catalogue in Microsoft Excel and start analyzing your data in there.
But in all other cases, including almost all of the interesting ones, your analysis
will need a little more flexibility. That is when, again, you start writing a bit of
code that helps you choose the right entries from the catalogues, and to produce
helpful diagrams — plots and histograms — that allow you to make sense of your
data. Then it becomes time to make use of a different kind of tool:

e A programming language is a tool for writing your own custom appli-
cations.

When you are using such a programming language for data analysis, you are
in effect writing yourself a custom application that can be used for the specific
analysis problem you need to solve. This approach has the advantage that you
have (nearly) full control over what you will be doing what your data.

It would not be an effective use of your time if you were to re-invent the
wheel by using a programming language for writing your own routines for stan-
dard tasks such as opening different kinds of data files, or standard analysis
operations. Instead, you should make use of useful collections of routine op-
erations that have been written by helpful other people. In the ecosystems of
programming languages, these usually come in the form of libraries or mod-
ules: chunks of codes that are easily included in your own program, and give
you pre-programmed functionality you can use for your own specific purposes.
That way, you need not write everything from scratch. But you will still need
to program in order to string these tools together to do your bidding.

What qualifies as a routine operation will depend on context, of course. Spe-
cialised astronomical modules provide you with tools for higher-level operations
that are routine in astronomy, but not elsewhere. An ephemeris module will
help you find the position of Solar System Bodies, for instance. Some routines
may be adapted to a specific telescope, allowing you to reduce and analyze that
telescope’s data. While you are still learning, you will want to avoid some of
those higer-level modules and re-invent at least some of the wheels in question,
since writing a routine for completing some specified astronomical task is a good
way of understanding what that particular task, and the astronomy behind it.
When have become more advanced, ready-made modules represent a different
problem: In research, it is important that you understand the different steps
in any analysis you are doing. Using a module which is a “black box” for you
represents a step in your analysis that you do not fully understand. In those
cases, it is even more important than usual for your analysis to include suitable



cross-checks and tests to ensure that it is indeed doing what you intend it to
do.

1.3 Concepts and operations

In general, when working with astronomical data analysis, you need not under-
stand all areas and aspects of a programming language. But there are certain
concepts, and certain types of operations/manipulations, which constitute the
basic working knowledge of virtually every astronomer working with data.

This starts with basic mathematical operations. When you go from the
magnitude to the flux emitted by an astronomical object, you will need the “x
to the power of n” operation; on the way back, the logarithm. Whenever you
perform calculations with your data, you will need the appropriate operations.

Data points come in sets: the pixel data for an image corresponds to a two-
dimensional arrangement, while a list of properties for astronomical objects
will correspond to a one-dimensional chain of values. Programming languages
feature suitable data structures for this kind of connected data, such as lists,
arrays, tuples, or different kinds of table (the meaning of those words can
differ somewhat between one programming language and the next). Knowledge
of these data types and the various ways of manipulating them is a must, along
with knowledge of more basic types such as strings, integers or floating point
numbers — and of course the basic concept of storing values in a variable in
the first place!

For operations on our data, we need control structures. If we want to
perform a certain operation on every element of a list, for instance, we will
need something like a for loop. In order to distinguish between different cases
— a structure that allows us to apply a certain combination of operations to
every element of a list. There will also be situations where we might want to
perform a certain operation on some elements of the list, but not on specific
other elements — to accomplish this, we need if clauses, that is, tools that tell
our program to apply certain operations only if specific conditions are met, but
not otherwise.

In addition to this kind of general knowledge, which is required when learn-
ing pretty much any general programming language, astronomers should have
at their disposal a set of programming tools for more specific tasks — which
often equates with familiarity with particular libraries or modules. Often, we
want to visualize our data, so knowledge of how to create various kinds of
plots, diagrams or histograms (both one-dimensional histograms and two-
dimensional density plots) is essential.

Last but not least, how do we get data into our program, and our results
out again? If we have obtained the data by downloading a file, we will need
to know about proper input/output operations (in short, i/0). For certain
data formats, such as the ubiquitous FITS image files that are the usual format
for astronomical images, or for astronomical tables in FITS or VOTable format,
there are special functions that read the data in a way that makes it particularly
easy to start working with them.

When we do not download the data in the form of files, but instead access



astronomical data bases, there is an additional issue. We need to tell the data
base which specific set of data we would like to access. In order to do so, we
must submit a data base query, or query for short, to the data base: a
formalized request for data, written in a specific query language. A number of
astronomical data bases are organised in the shape of a Virtual Observatory
(VO) — data bases that conform to certain common standards to enable easy
access for all astronomers. The query language for the VO is the Astronom-
ical Data Query Language (ADQL), which is similar to the more general
Structured Query Language (SQL, pronounced either ”S—-Q-L” or ”sequel”).
Queries in this language are useful both in the context of an application soft-
ware like TOPCAT, where they can used in the framework of the Table Access
Protocol to download a specific subset of data from an online data base via
the Internet, or as part of a Python program.

There is another aspect of all this, which would require a tutorial of its own
for proper treatment: data can be generated by software, too. Astronomy
isn’t only about observing. In the end, we want to understand the objects we
observe. That involves creating simplified models for these objects. If a star
is (put simply) a gigantic ball of plasma, held together by its own gravity and
heated up by nuclear fusion reactions in its core, then if we create a simulation
of such an object, using our knowledge of the laws of physics, the resulting
model should have similar properties to a real star (as we can check using
observations).

Simulations, too, require coding. In physics, only the simplest situations
can be described “analytically”, that is, writing down what happens in terms
of simple functions such as sin(x), cos(x), polynomials and the like. For more
complicated situations, you will need to simulate what happens numerically:
starting with the initial situation, and then letting the computer reconstruct,
time step by time step, what happens. We will encounter a very simple simu-
lation in section 11.

1.4 Software/language choices

Every text on data processing has the same problem: For specific applications,
there is usually more than one application software, and of course there are nu-
merous programming languages. In teaching about data processing, one should
include specific examples, and students should work through such examples
themselves, gaining hands-on experience with all that data processing involves.
If the author chooses to present these examples in one specific programming
language, at least some students will later, when they are working on a specific
project, need to re-learn a different programming language.

This is not as bad as it sounds, though. Most programming languages,
and most applications, share similar concepts and functions. Once you have
learned about those in the framework of one specific programming language, or
application software, switching to another language or software will be much
easier than starting from scratch. Thus, learning what this tutorial has to offer
is definitely not a waste of time, even if it should turn out that later on you
will need to adapt to other software.



In this tutorial, I have chosen some common application software for sim-
ple operations: SAOImage DS9 (DS9 for short) is a comparatively simple
image viewer that also allows some basic manipulation of astronomical images.
TOPCAT is a standard tool for accessing data from the Virtual Observatory.
The programming language used for more complex tasks is Python, which is
widely used in astronomy. This wide use has a great advantage: astronomers
have been writing helpful astronomy-specific libraries and modules for Python,
and are actively maintaining them. If you're starting a career in astronomy,
chances are that you will do your basic programming in Python.

All that said, let’s get started. To get our bearings, we start with something
simple: before we delve into astronomical Python and start coding ourselves,
let us begin with two simple use cases for application software: In section 3, we
will look at astronomical images and combine red, green and blue filter images
into a color image. In section 4, we will look at some basic table operations
with TOPCAT.

2 Data basics: images, spectra, tables

In astronomy, just as in other sciences, we are not interested in data for data’s
sake. We want to do astrophysics: we want to use data to further our under-
standing of the universe. Before we look at specific tools, and learn how to use
them, let us consider some of the properties of astronomical data, as well as
some of the specific ways of extracting information from them.

2.1 Images: Colour, brightness, pixels

Astronomers take images of astronomical objects, using telescopes and suitable
instruments attached to those telescopes. Public versions of such images can
be stunningly beautiful, and contribute significantly to the fascination of the
general public with astronomy. The underlying science images are commonly
stored in a format known as FITS, which stands for the “Flexible Image Trans-
port System” — a flexible file format that astronomers have been using for
images, spectra, data tables and more since the 1980s. When you encounter
a professional astronomical image, it is likely to be in that particular format,
with file extensions “.fits” or “.fit” on an older Windows machine. Figure 1
shows one of the iconic images from the Hubble Space Telescope, namely the
open cluster Westerlund 2.

Using this image as an example, we can demonstrate a number of properties
of astronomical image data. Phenomenologically, the image contains two types
of information: the stars we see in the image are much too small for even
Hubble to see any of their structure. They appear as point sources. In
addition, we have extended sources, in this case a region of ionized hydrogen
(HII, in astronomical parlance), which are, as the name says, extended areas
with varying brightness and colour.

While we tend to think of astronomical images as a rendition of “what’s up
there in the sky,” there are several aspects in which such images are not faith-
ful renditions — and those aspects are crucial for understanding astronomical



Figure 1: Image of the open cluster Westerlund 2, taken by the Hubble Space Telescope.
Downloaded from spacetelescope.org. Image credit: NASA, ESA, the Hubble Heritage Team
(STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

image data. Let us start with the colours. Professional astronomical images
are black-and-white images. One reason for this is that digital cameras (CCD
or CMOS) are, at their most basic, black-and-white. For each pixel, they can
only record how much light has fallen onto the collecting area for that pixel
(more specifically: how many photons have fallen). Consumer cameras as in
your smartphone or your digital camera are only able to produce colour images
because they have an array of filters installed in front of the array of light-
detecting sensor pixels. A common pattern is the Bayer mask, part of which is
shown in figure 2.

Figure 2: Part of a Bayer mask pattern: an array of filters installed in front of detector pixels
to enable the quick creation of a colour image

When such a consumer camera has taken an image, the colour information
is interpolated, and a colour image is displayed and saved. (If you have a
camera that can save images in some kind of “raw” mode, you can see the
not-yet-interpolated pattern.)

For astronomical images, a fixed filter mask is impractical for several rea-
sons. Astronomers would like to get the full resolution for their images, so
reducing resolution in each color band by having information about the green

10
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brightness in every second pixel only, and about red and blue in every fourth
pixel, is a drawback. Also, astronomers use a bewildering array of possible
filters, not just those corresponding to red, green, and blue (R, G, B). As-
tronomers need the flexibility of putting these different filters in front of their
camera. On the plus side, most astronomical objects change only very slowly.
Using different filters in succession, taking an image first through one filter,
then through the next, is perfectly feasible; those images will all show the tar-
get object in effectively the same state.

From these separate images, we can reconstruct colour images. (One simple
way of doing this will be shown in section 3.5.) If your aim is to produce a
“pretty picture,” there are several filter combinations that will serve. Perhaps
the best-known is the combination of images taken with the filters B, V, and
R respectively from the Johnson-Morgan photometric system to represent the
colours blue, green, and red.

But most images taken with the Hubble Space Telescope do not include
B, V and R versions. Colour images composed from them will be false-colour,
and look markedly different from the colours we see around us. That is OK
as long as you use the colours only to help you discern structural details, but
you should be aware that the result is not a faithful rendition of astronomical
colours. (There are heated discussions among amateur astronomers’ about
what constitutes faithful colours; some amateurs strive for the optimum of
faithful colour rendition. Their images are probably the closest you can get
these days to faithful colouring.) Figure 3 shows to images of the same region
side by side: the Westerlund 2 image already shown in figure 1, and an image of
the same region, taken in April 2017 with the 2 m Faulkes Telescope operated by
Las Cumbres Observatory at Siding Spring in Australia. The left-hand image

Figure 3: Two images of Westerlund 2. Image credit left: 2 m Faulkes Telescope operated
by Las Cumbres Observatory at Siding Spring under license CC BY-2.0. Image on the right:
NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the
Westerlund 2 Science Team

was reconstructed from three images taken through B, V, and R filters. The

2These days, with sophisticated technology available, the so-called amateur astronomers
are working very, very professionally indeed, and produce spectacular images.
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red colour of the gas cloud is probably fairly realistic. The Hubble image no the
right, while much higher resolved and full of structural details, doesn’t show
faithful colours. Few Hubble images do (which does not take away from, but
possibly adds to their power to fascinate viewers).

Another aspect to keep in mind is the brightness scale of the image. FITS
images typically have 16-bit brightness values, that is, each pixel can take on
values from 0 to 2'6 = 65 536 (apart from a possible offset value); alternatively,
brightness values within that range are stored as floating-point numbers. Even
in the integer case the best current computer screens cannot faithfully display
that dynamic range. And even if they could, the result of simply displaying
pixel brightness in a linear fashion would not let you see the interesting details,
and understand your image.

Published astronomical images will always® have some kind of (brightness)
scaling applied to them. Figure 4 again shows the 2 m Faulkes Telescope image
of Westerlund 2, this time only the one taken through the red R filter. The
leftmost version has linear scaling (pixel value linearly related to brightness
shown in the image), with the smallest pixel value taken as black and the
brightest taken as white. The only structure visible corresponds to the locations
of the brightest stars. No cloud structure is visible in this rendition. The center
version is still using a linear map, but now every pixel value smaller than 4573 is
displayed as black, and every pixel value larger than 6001 is displayed as white,
and brightness values between 4572 and 6002 are displayed as the various shades
of grey in between. By concentrating on this narrow range of brightness values,

Figure 4: Part of the Westlund 2 image taken through an R (red) filter in April 2017 with the
2 m Faulkes Telescope operated by Las Cumbres Observatory at Siding Spring in Australia
with different scaling. Left: Linear scaling from 0 to 65536. Center: Linear scaling from 4572
to 6002. Right: Square scaling from 4572 to 6002

we not only see more stars, but also some of the structure of the cluster’s
hydrogen clouds. But at this scaling, the background sky looks rather bright.
If we insert a square function — where the displayed brightness is proportional

3With possible exceptions when an author is trying to make a point about scaling and
astronomical images.
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to the square of the pixel brightness value — we obtain a clearer differentiation
between the dark background and the brighter areas corresponding to the cloud.
This is shown in the version on the right.

Choosing a good scaling is not an exact science, but a matter of artisanship:
a good scaling will serve to illustrate the structures that are scientifically inter-
esting. But you should always keep in mind that there were choices involved in
creating the image.

A number of images are really mosaics, where several images have been
stitched together to form a larger picture. The beautiful Hubble version of
Westerlund 2 in figure 1 is a case in point, as it is a composite image using
observations with Hubble’s Advanced Camera for Surveys (ACS) and its Wide
Field and Planetary Camera 3 (WFPC3). Figure 5 shows a sample WFPC3
image (although probably not one used in the final composite*) pasted into

Figure 5: Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota
(ESA/STScI), and the Westerlund 2 Science Team

the final colour image to give you an idea of the footprint of the WFPC3. In
fact, the WFPC3 inset is already a blend of four images, created from the three
CCDs of the Wide Field Camera (the three larger squares) and the CCD of the
Planetary Camera (smaller square nestled into the corner formed by the other
three).

As a next step, let’s zoom in into the WFPC3 images, more concretely: into
one of the Wide Field Camera squares. The result can be seen in figure 6. There
are several points of note. The first is that the image is made up of discrete
square fields: pixels. That is no surprise if you have ever looked very, very
closely at digital photographs. It also means that, at the lowest level, working
with digital images means working with pixels, and with the brightness value
associated with each pixel.

4 1 didn’t find any of the original WFPC3 images in the MAST archive; all I could find
were already (smaller) composites.
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Figure 6: Zoom in on the WFPC2 image of Westerlund 2. Image credit: NASA, ESA

Pixel positions are described by a pair of (integer) coordinates for each pixel.
A schematic example is shown in figure 7.

1 2 3 4 5

Figure 7: Pixels and pixel coordinates

The brightest pixel in the 5 x 5 array would have the coordinates (4, 3), since
it is in the fourth column from the left, and in the third row from the bottom.
(Beware, other conventions exist! Some count rows from the top. Some start
the count at number 0, not number 1.)

2.2 Images: PSF and noise

Back to figure 6. The disk-shaped bright objects in the image are stars. Here’s
the thing: Westerlund 2 is at a distance of about 20 000 light-years from us. At
that distance, even an especially large super giant with 1500 solar radii should
subtend an angle of a mere 0.002”. Each pixel in the WFPC2 image has a side
length of 0.1”7. If our image were a faithful map showing the exact direction
whence light reaches us from the sky, even these largest known stars would
fall within a single pixel. Instead, they and the much more common markedly
smaller stars are smeared out and appear in the image as disks. Figure 8
shows a brightness profile of the star at the bottom center of figure 6. The
disk is a few pixel wide. Why the disk? Why not a single pixel? The answer,
as you probably know, is that light is a wave phenomenon, and that a wave
passing through an opening — in this case, the aperture of the telescope —
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Figure 8: Brightness profile of the bright star near the bottom center of figure 6

is diffracted. The result is a diffraction pattern that makes the image of a
point source a disk (if you were to look very closely, a disk with concentric
rings around it). The larger the telescope aperture, the smaller the disk —
which is one key reason to build ever larger telescopes: ever better resolution
for the resulting images. The function that defines the brightness distribution
that results when a telescope instrument produces an image of a point source
is called the point-spread function, abbreviated PSF.

Last but not least, look at the part of figure 6 that is not stars, but back-
ground. The background is not uniformly black, but mottled grey — a section,
shown at even larger magnification, can be seen in figure 9. There are several

Figure 9: Zoomed-in portion of part of the background of figure 6

reasons that some of the pixels are brighter, others less bright. One is the
presence of distant, unresolved astronomical objects. But those cannot explain
the small-scale variation from pixel to pixel — remember that even a point
source would appear as a smeared-out disk! Instead, the variability is noise —
a spurious addition that tells us nothing about the astronomical light sources
out there.
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The most fundamental effect is one of statistics: light reaches our detectors
in the form of photons, of light particles. The intensity of light reaching us from
a specific source determines the probability of a photon arriving within a certain
time interval. But the arrival itself is a random event. (You probably know a
similar situation: radioactive decay, where the decay probability per unit time
is constant, but each decay will still occur at an unpredictable random time.)
This randomness translates into pixel brightness fluctuations. The relative size
of these fluctuations shrinks as the total number of photons collected grows.
This is the other key reason why astronomers want large telescopes (and in
most cases still need long exposure times, in addition): the more light they can
collect from a distant object, the smaller the relative fluctuations, the higher the
signal-to-noise ratio, and thus the clearer the image of those distant structures.

There are other kinds of noise. If you inspect raw, unprocessed images
taken with the Hubble Space Telescopes, you will find one kind that is typical
for space telescopes: traces left by cosmic particles depositing their energy in
the detector, leading to either longish streaks or more sharply defined dots,
depending on the direction the particle was travelling. Figure 10 shows an

Figure 10: Traces of cosmic ray particles in an image taken with the Hubble Space telescope.
Image credit: NASA and ESA

example (albeit from Hubble targeting a different object, the Eagle nebula).
Also, there is noise from the electronic devices involved (although cooling key
electronic elements down can reduce that kind of noise considerably).

2.3 Images: darkframes and flatfielding

When astronomers prepare data for the extraction of astronomical information,
a process commonly called data reduction, there are several typical steps they
take in order to reduce both the noise produced in their instrument and the
instruments biases when it comes to recording brightness.

One step involves subtracting dark frames. To produce a dark frame, close
your telescope off, so no outside light falls onto your camera. (With a smaller
amateur telescope, you might just put a lens cap on; alternatively, where that
is possible, you just don’t open the shutter of your camera while taking an
image.) Make sure to choose the same exposure time you will also use when
taking your astronomical image, your science frame, and take the image under

16



the same conditions: with the same exterior temperature, and with the same
amplification settings (for a consumer camera: “ISO value”). That way, the
dark image will record a similar amount of electronics noise as you can expect in
your science image. The noise will be random, though, and if you take several
dark frames, their noise patterns will vary. Taking their average will produce a
master dark frame that will provide you with a good estimate of the amount
of electronic noise you can expect at each pixel position. Subtract that master
dark frame from your science frame in order to reduce the contributions of
electronic noise in your final image.

Then, there is a question of bias. I will illustrate this using a non-astronomical
image, since the effect is more obvious in an everyday setting. Fig. 11 shows a
holiday snapshot, a lake in Northern Germany.
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Figure 11: Holiday snap with clearly visible vignetting

But you can see that the brightness is not as you would expect: near the
edges, the image becomes darker. This is not a property of Northern-German
lake landscape; it is a property of the camera I have used to record the image,
an effect known as vignetting.” In a telescope image, you might also see dark,
ring-shaped smudges reminiscent of coffee stains; those are caused by dust flecks
on the telescope mirror.

Systematic brightness distortions like this can be removed as follows. In
our example in Fig. 11, the brightness of each pixel is a combination of the
brightness of the part of the object (in this case, landscape) we have recorded
on the one hand, and the sensitivity (or lack thereof) of our telescope-instrument
combination in that specific image region on the other.

We can reconstruct at least the relative sensitivity of our telescope-instrument
combination by taking an image of a scenery with completely uniform bright-
ness. In that case, all brightness variations are, by definition, not due to our
target scenery (which is completely uniform), but due to sensitivity variations.
Such an image can be seen in Fig. 12, and is called a flat field (image). In

5Actually, I have added that effect afterwards, artificially, but let’s pretend it is real. Real
vignettes look very similar.
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astronomy, such images are produced either by pointing the telescope at a uni-
formly lit canvas within the dome, or else by waiting for dusk (or dawn) and
pointing the telescope at the sky, whose scattered light will be sufficiently uni-
form across the typical narrow fields of view of astronomical telescopes (“sky
flats,” specifically ”dusk flats” or "dawn flats”). For the flatfield image, too,
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Figure 12: Flatfield image taken with the same telescope-instrument combination as the
holiday snap, with clearly visible vignetting

one can produce dark frames (taken at the same exposure as the flatfield image)
and subtract them, resulting in a suitably corrected master flat. That master
flat encodes the sensitivity for each image pixel. With this information, we
can correct for the sensitivity variations as follows. Assume that a pixel in the
master flat is twice as bright as a second pixel. That would mean our setup is
only half as sensitive for the second pixel than for the first. But if we were to
take an image, and then to multiply the brightness value for the second pixel
with the factor two, we would have compensated for the different sensitivity
levels.

More generally, we can restore proper relative brightnesses of all our pixels
by dividing our science frame by our master flat, pixel by pixel. The result
for our holiday snap can be seen in Fig. 13. The compensation is not perfect.
For instance, if fewer photons have reached a certain detector pixel, then the
statistical noise will be somewhat larger for that pixel. Dividing the pixel value
by a factor, as one does in flatfielding, will not get rid of that additional noise.

To sum up the last few sections: The digital astronomical images used by
astronomers are made of pixels; what we see is in part determined by the prop-
erties of our target object, but in part by the properties of the optical system
used (telescope plus instrument and their PSF), and in part by noise. The
“elementary images” are black-and-white, and usually taken through a specific
filter. When such images are displayed, additional decisions were involved about
how to represent brightness. Published images frequently use colour to convey
additional information — although in most cases, these are false colour images,
which do not reproduce the colour of the object we would perceive could we
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Figure 13: Flatfield-corrected holiday snap

view it directly. Astronomers employ dark frames and flatfielding to reduce
certain types of noise, and of sensitivity variations. Sometimes, images are fit
together to form a larger mosaic.

When working with images, we need to keep all this in mind — after all,
we want to use the information contained in the image to make deductions
about the astronomical objects observed. To do that, we need to know which
aspects of the image really do contain information about the object — and not
information about the telescope-instrument combination, or photon statistics.

2.4 Images: astronomical information

So far, we have talked mostly about image artefacts — what makes an im-
age different from the real thing. Time to talk about the physics behind it
all: What information is contained in astronomical images? The information
important for classical astronomy, for a start: Images contain position infor-
mation about astronomical objects, information about where exactly an object
is located in the sky (for object whose position does not change in the usual
coordinate system), or about how its position changes over time.

In the era of classical astronomy, this was the main purpose of observatories:
Position astronomy; determining the positions of stars in the sky, as an aid to
celestial navigation and also to allow for precise time-keeping: until the advent
of stable quartz clocks in the mid-20th century, the periodic changes in the
night sky, in particular the diurnal motion during one (sidereal) day, were the
most accurate time-keeping method.

In modern astronomy, determining stellar positions remains an important
sub-field, which for the last few years has been dominated by ESA’s astrom-
etry satellite Gaia. Accurate catalogues of stellar positions not only provide
a framework for localising astronomical objects in general. Via the parallaz
effect, they also provide information about the distances of stars in our cosmic
neighbourhood, which in turn is a prerequisite for farther-reaching methods
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of astronomical distance determination. Knowledge of astronomical distances
is crucial for making deductions about object’s luminosity. (In principle, an
object that appears to be bright in the night sky could have a rather faint lu-
minosity, but appear bright since it is very close to us, or else have a really high
luminosity while being rather more distant.)

Then, there is photometry, that is, determining the (apparent) brightness
of astronomical objects. If we have chosen proper exposure times, and made all
necessary corrections, we could deduce the brightness of a star from the sum
of the values of the pixels associated with that star. In practice, it’s difficult
to separate star pixels from non-star pixels, but there is a simpler way known
as aperture photometry: Define a circular region that contains the PSF

Figure 14: Aperture photometry in a part of the Hubble Space Telescope image of West-
erlund 2. Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota
(ESA/STScI), and the Westerlund 2 Science Team

of the star completely (the yellow circle in Fig. 14). At some small distance
outside, define an annular region (bounded by the two blue circles in Fig. 14).
Assuming that the central circle contains only the star we are interested in,
and the annular region no discernible star at all, we can argue as follows: If
we sum up the pixel values within our central circle, we get the light from the
star plus background light. We can estimate the background light as follows:
On average, the background brightness should be the same in the central circle
and in the surrounding annulus. In the annulus, we can determine the average
brightness by summing up the pixel values in the annulus and then dividing
by the number of pixels (equivalently, by the area of the annulus). Multiply
this average by the number of pixels in the central circle (equivalently, by the
area of the circle), and the result will be the brightness contribution from the
background within the central circle. Subtract this contribution from the total
sum of the pixel values within the central circle, and what is left is a measure of
the brightness of the star. Note that photometric measurements are sometimes
made with the telescope slightly out of focus, distributing the object’s light over
a greater number of detector pixels for greater accuracy.

In astronomical practice, stars are point-like objects. For extended objects,
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we can measure a surface brightness, given in brightness per angular area in the
sky, and we can measure how that brightness varies from location to location.
Such brightness maps contain information about the amount of material we
are seeing. The situation is more complicated when densities are so high that
some of the matter obscures our view of whatever matter lies behind (that is,
if the matter in question is “optically thick”). In the simplest case, we can
see all of the light from the matter of, say, a nebula (the nebula is “optically
thin”), and the brightness in a certain area of the sky allows us to estimate how
many atoms we are seeing in that area — a column density since we cannot
deduce the three-dimensional structure, only the number of atoms within that
column of the three-dimensional object which gets projected to the sky-region
in question.

Brightness measurements will only ever cover some limited region of the elec-
tromagnetic spectrum. Some of the limitation comes about by the kind of tele-
scope we use. An ordinary optical telescope will be able to receive visible light,
near-infrared light, and ultraviolet light (which, for ground-based telescopes, is
somewhat pointless since almost all UV light is filtered out in the Earth’s at-
mosphere). But its camera would not be able to detect, say, mid-infrared light,
let alone X-rays. In practice, as we have already seen, astronomers voluntarily
restrict themselves to even narrower portions of the spectrum, by using suitable
filters. This allows for quantitative description of the colors of astronomical ob-
jects. An object that is bright when viewed through a blue filter, but dim when
viewed through a red filter, will be blueish in color.

What we have called the brightness so far, summing up pixel values in
our image, is proportional to the number of photons from a certain source (or
a certain area of the sky) entering our telescope during the exposure time.
Since the exposure time is the same for all the objects in our image, the ratio
of brightness values for two such objects is equal to the ratio of the energy
per unit time (in the given filter band) we receive from those two objects.
Also, since in both case we are using the same telescope, and hence the same
collecting area, the ratio is equal to the ratio of the energy per unit time per
unit area (again in the given filter band) for those objects, in other words:
the ratio of their intensities. Intensity ratios are how astronomers traditionally
compare the apparent brightness of celestial objects — except that, to ensure
some degree of backwards-compatibility with the naked-eye-based, 2000-year-
old Ancient Greek magnitude system (as one does), those ratios are measured
on a logarithmic scale. Specifically, if I; and I are the intensities of light we
receive from two objects 1 and 2 in a specific filter band, then their apparent
magnitudes in that band are defined as

m1 —mg = —2.5-log (Il> ) (1)
I

A reference point for the magnitude system is chosen by setting a value for the

magnitude of a specific star in a specific filter band; for instance, in the V filter

band that roughly corresponds to a green filter, the star Vega was originally

chosen as a zero point, although his modern visual magnitude is my = +0.03.

Note the minus sign — magnitude values are larger for fainter stars. With the
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naked eye, under good conditions, you can observe stars with magnitudes up
to about my = 6.5.

Brightness, of course, can change. Different types of variable stars, for
instance, can be distinguished by the shapes of their light curves, which docu-
ment how their brightness changes over time. The transit method for detecting
exoplanets also relies on light-curve measurements.

Last but not least, images also contain spatial information about the objects
themselves. Typically, that information is projected onto the sky — we do not
see the full three-dimensional structure of, say, a gas cloud; instead, we have one
particular fixed perspective on that cloud. Interpreting what we see typically
involves models for the physical, three-dimensional structure, whose predictions
can then be compared to what we actually observe.

2.5 Spectra

On to a central kind of data set in astrophysics: spectra! A spectrograph
contains a dispersive element (or even more than one), which splits the in-
coming light into its rainbow colours or, in physics terminology, into its different
wavelengths. Figure 15 shows ceiling lamps, imaged through a dispersive grid,
namely through “spectral glasses” that can be used to demonstrate dispersion
effects. As you can see in the figure, though, the spectral decomposition makes

Figure 15: Light sources, imaged through a dispersive element (“spectral glasses”)

for a hodgepodge of effects. The coloured images of the lamps, each corre-
sponding to a spectral line, overlap, creating a mix of spatial information and
wavelength information that is not easily disentangled. A common solution is
shown in figure 16: introduce a slit mask, with the slit oriented at right angles
to the direction of spectral dispersion. If you keep the slit small, the overlaps
between the successive images of the slit will be small as well. In the case of
separate spectral emission lines, as in this example, you can then see the lines
clearly separated.

When you see the image of a spectrum that is a broad colourful band (pos-
sibly with bright emission lines, or dark absorption lines), you see a succession
of such slit images, each copy indicating the brightness at that particular wave-
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Figure 16: One of the light sources masked by a slit, and imaged through the same dispersive
element

length. One such image can be seen in figure 17: a spectrum of sunlight reflected
by the Moon, produced with a Baader DADOS spectrograph. The image was

Figure 17: Spectrum of sunlight, reflected by the Moon

taken for demonstration purposes with a consumer digital camera, and thus
shows colours — any professional image of a spectrum would, of course, be in
black and white; the colour carries no additional information, as the position of
a spectral feature along the horizontal axis already defines its wavelength, and
hence its colour.

The information contained in a spectrum is one-dimensional — for each
wavelength, we have a quantity indicating how much light is emitted in that
particular wavelength region. Thus, it is natural to plot spectral data as a curve.
The top part of figure 18 shows an artificial color image of a Solar spectrum,
complete with dark Fraunhofer lines. The bottom plots the spectrum as a curve,
with wavelength plotted along the x axis and relative flux on the y axis. The
requisite data is taken from IAG solar flux atlas® The curve is quite complex,
with a forest of absorption lines — narrowly defined minima — one next to
the other. If we zoom in by plotting a much smaller wavelength interval, as in
figure 19, you can see the the lines themselves have characteristic shapes.

When working with raw data from spectra, certain reduction steps need to
be taken. Some of those are similar to the reduction of image data: Flatfield-
ing is again needed to compensate for differing sensitivity of the instrument
in different parts of the spectrum. This is more difficult for a spectrum than
for an image, since for a true flat field, you would need a perfectly flat spec-

5 Reiners et al. 2016, [http://adsabs.harvard.edu/abs/2016A&A...587A..65R].
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Figure 18: Solar spectrum as a curve (bottom) and the reconstructed version of a slit spectrum
image (top). Data from the IAG Solar Flux Atlas, Reiners et al. 2016
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Figure 19: Narrow region from a solar spectrum. Data from the IAG Solar Flux Atlas, Reiners
et al. 2016

trum. Instead, any well-known, preferably smooth calibration spectrum can be
used to deduce the varying sensitivity. Dark frames again can be used to take
into account that the electronics of the detector will produce some spurious
brightness in the image, which needs to be subtracted.

Wavelength calibration is another necessity. After all, the spectral spread
has a specific meaning — light is separated according to wavelength (or fre-
quency). In order to map specific wavelengths to the direction along which
dispersion takes place, astronomers often employ specific calibration lamps,
which contain a gas or a mixture of gases that produce a hopefully dense array
of known emission lines. For a simple amateur spectrograph, you might use
Neon for the purpose; at the professional level, you might for instance find a
mixture of Thorium, Argon, and Neon. Sometimes, the calibration lines will
be recorded separately; in other cases, they are recorded concurrently with the
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astronomical observation to allow for a direct comparison. A special case of
the latter, unavoidable for ground-based telescopes, are telluric lines — ab-
sorption lines created not in outer space, but by light absorption in the Earth’s
atmosphere. Such telluric lines can be used for calibration, as well.

Image distortions can make spectral data reduction particularly challenging.
A particularly complex case are Echelle spectrographs, where two kinds of spec-
tral dispersion are combined: A grating will, in fact, produce several different
spectra (“spectra of different order”). An Echelle spectrograph disperses each
light blob associated with a specific order in the direction orthogonal to the
initial dispersion, creating a complex pattern of partial spectra from which an
overall spectrum can be reproduced with high accuracy. The raw image of one
such Echelle spectrum, taken with the FEROS spectrograph at the MPG/ESO
2.2-metre telescope at ESO’s La Silla observatory, can be seen in Fig. 20. This
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Figure 20: Region within a raw image of a spectrum of the star HIP66974 and a calibration
lamp, taken with ESO’s FEROS spectrograph in June 2015 (Data set SAF+FEROS.2015-06-
13T23:16:46.772). Retrieved from ESO’s Science Archive on 24 April 2019

is just a small region, about 10%, of a much larger image. As you can see, the
horizontal, curved stripes always come in pairs: the stripe on top is mostly white
with some dark absorption lines (which increase lower in the image), while the
lower stripe consists of a fairly dense forest of emission lines. The upper stripe
of each pair is the science image, in this case of the star HIP66974, a star with
the same spectral type (G2V) as the Sun and thus a fairly similar spectrum.
The lower stripe in each instance is the calibration lamp — hence the many
emission lines, each marking a well-known reference wavelength. Reducing this
spectrum would mean to map the different stripes to their proper wavelength
regions (using the calibration lines), unbending the curved image, and properly
calibrating the brightness over the different parts of the image.

Once the spectrum is reduced, or if one is working with a reduced spec-
trum in the first place, the spectrum as a whole and in particular the spectral
lines contain a wealth of information about the object in question. Systematic
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Doppler shifts in the spectral lines indicate whether or not the light source is
moving towards us or away from us. Doppler shifts that change periodically
over time contain information about objects orbiting each other, from double
stars to exoplanets detected by the radial velocity method. Simple data analy-
sis in these cases proceeds by fitting the individual spectral lines, finding their
central wavelength, and tracing the changes of that wavelength over time.

The shape and relative depth of spectral lines of a star contains information
about the star’s metallicity, that is, the fraction of elements heavier than Helium
contained in the star’s atmosphere, about the surface gravity and about the
effective temperature. Some specific spectral lines corresponding to radioactive
elements can be used to reconstruct the age of stars, and have been used to
find the oldest stars in existence. The simplest part of such an analysis is about
identifying the lines corresponding to specific chemical elements; these lines
show which elements are present in the star’s atmosphere. Some such lines
are indicated in figure 18. In all of these cases, analysis usually proceeds by
creating spectra based on suitable models and comparing those with the actual
observations, finding the best fit.

2.6 Data cubes

So far, we have talked about two-dimensional images (where the two dimensions
correspond to an area on the night sky) and one-dimensional spectra (where
the one dimension corresponds to wavelengths). Data cubes are the combina-
tion of this: We have a two-dimensional image of the night sky, but at each
pixel location, we have not only a single brightness value, but instead a whole
spectrum. With two plus one dimensions, we are effectively looking not at a
two-dimensional rectangle, but a three-dimensional cube. A data cube does
not contain all the information reaching us from a certain region of the sky at
a certain time (polarisation information is missing), but it comes impressively
close.

One way of obtaining such a data cube is with Integral Field Spec-
troscopy — for instance: splitting an image into comparatively large “pixels,”
each of which is channeled into a glas fibre which transmits its light to a spectro-
graph, where the spectrum is then recorded. Another natural way of recording
such a data cube is in interferometry, where the light from several telescopes is
combined in a coherent way, making use of the wave nature of light. In recon-
structing images from interferometric measurements, one can distinguish (to a
certain degree) between contributions with different wavelengths; in effect, this
allows for the reconstruction of a three-dimensional data cube.

Human beings are not equipped for really three-dimensional vision. What
we call three-dimensional vision is really just seeing surfaces within (sparsely
populated) three-dimensional space. We cannot see all the points within a three-
dimensional data cube at once. Fig. 21 shows one solution: showing separate
images for different regions within the spectrum. In this particular case, the
“channel map” shows 16 of the 72 frequency bins around the 21 cm hydrogen line
that is characteristic for atomic hydrogen (that is, hydrogen atoms; not bound
into hydrogen molecules, not ionized to form a plasma, just simple atoms).

26



Figure 21: 16 of the 72 channels recorded for the galaxy NGC 3198, from the THINGS survey
(Walter et al. 2008), [http://www.mpia.de/ THINGS/]

One of the most interesting applications of data cube data is to extract
the information they contain about the large-scale motion of matter. Fig. 21
shows 21 cm radiation emitted by hydrogen atoms, but some of that radiation
is shifted to lower and some to higher frequencies — why? Because some of the
atoms are moving towards us, others away from us, and their 21 c¢cm radiation
undergoes a corresponding Doppler shift. The data cube contains information
on the radial velocity of the gas we see in the different frequency channels. We
can combine that information to make a color picture whose color encodes the
average radial velocity of gas in each region of the image, giving what is called
a first moment map. That picture is shown in Fig. 22. Reddish regions are
moving away from us, blueish regions towards us. The combined picture is that
of a disk galaxy whose stars are rotating as a whole, one side of the disk coming
towards us and the other moving away from us in that coordinated motion.

Alternatively, instead of taking the average, we could compute the standard
deviation of the velocity values associated with each pixel. That would give us
an estimate not of the bulge motion of gas in that region, but of the diversity
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Figure 22: Velocity map for the galaxy NGC 3198, from the THINGS survey (Walter et al.
2008), [http://www.mpia.de/ THINGS/]

of motion, the spread of radial velocities.

In a similar manner, we can use data cube information to map all those
quantities that can be derived from spectra — the presence of specific elements
and thus the chemical composition, on larger scales the prevalence of different
kinds of stars, and more.

2.7 High-level data: catalogues and tables

Once astronomers have derived observational or physical quantities from their
observations and measurements — deduced the temperature of stars from their
spectra, or their luminosity from their apparent brightness and some measure
of their distance — they can compile catalogues containing such higher-level,
derived physical information. Analysing this kind of high-level data is broadly
similar to statistical analysis in other fields, and uses the same general tools.
To begin with, a catalogue is no more than a list. Conventionally, each row
in that list represents a separate object, and each column represents a property.
If you just look at the numbers in a big list, you are sure to miss the forest
for the trees. In order to extract trends, distribution, systematic correlations,
functional relationships from the data, in astronomy: in order to understand
what physical laws and evolutionary pathways has made objects the way they
are, we need employ proper tools. Statistical analysis is a wide field, and in
this basic introduction, we will only look at the most basic of descriptive tools.
A very basic tool is a histogram, which allows us to see the distribution of
values for a single quantity within our sample (e.g. among the objects of our
catalogue). The basic principle is simple: within the range ;i < = < ZTimas
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spanned by the values for the quantity x, we define N bins of equal size, each
with a lower boundary x; and an upper boundary z;y1. A value z falls into
the bin with index ¢ if x; < z < z;41. We then draw the bins as rectangles,
whose height is proportional to the number of values which fell into the bin.
This gives us a measure of how prevalent (or not) specific values are.

Histograms can also be logarithmic. In that case, we divide the range of the
quantity we intend to map into bins of equal logarithmic size. For instance, if
one bin contains stars that are between 1 = 10° times and 10 = 10' times as
luminous as the Sun, the next bin would be from 10! to 10% solar luminosities
L, and the following one from 102 to 103 L. Those bins are of equal size when
it comes to their exponents. Such logarithmic binning is useful for physical
properties that are spread across a wide spectrum of scales.

Here is a simple example for a histogram with logarithmic bins. Fig. 23
shows the basic preparations for manually drawing a histogram: a tally sheet
for putting the stars in a certain data set into their proper bins. The visual ap-
pearance of the tally sheet already constitutes a simple histogram-like represen-
tation, although in an unusual sideways orientation. Hand-crafted histograms
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3-10%to 1072 Lg | Il 3
1072 t0 3-1072 Ly | M 10
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Figure 23: Tally sheet in preparation for a hand-crafted histogram

have gone the way of so many other hand-crafted things. The automatically-
generated version for the same histogram can be seen in Fig. 24. We will
look at ways of generating such histograms in sections 4.7 (TOPCAT) and 8.7
(Python).

The data set is DEBCat,” a collection of more than a hundred well-studied
transiting double stars. In that particular set-up, astronomers have sufficient

"Southworth 2014, [https://arxiv.org/abs/1411.1219]. The data and supplemental infor-
mation are available online at [http://www.astro.keele.ac.uk/jkt/debcat/].
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Figure 24: Automatically-generated histogram

information to be able to reconstruct the stars key physical properties like
mass, radius, luminosity and temperature, and derive properties such as a star’s
average density.

Let us use some of those properties to look at another very common tools
are diagrams populated with data points in which we plot one quantity against
another. Fach axis stands for a specific physical quantity (commonly scaled
either linearly or logarithmically), and each data point corresponds to a pair of
values, one for each of the axis quantities.

A famous example, with two logarithmically scaled axes, is the Hertzsprung-
Russell diagram, a version of which is shown in Fig. 25. The values correspond-

10°4 It
1044 o’
k]
. ., :
3] MY B
K 10 .: ' ol
c . " . 4
2. 10%4 o
2 o Thaalt
8 d 3
10t s
: F
4 10°4 . .3.
10714 8T
Lo
10724 ok
‘s
103 104

Temperature in K

Figure 25: Hertzsprung-Russell diagram using physical quantities (temperature and luminos-
ity) instead of spectral classes and luminosity classes. Data from DEBCat

ing to each data point are read off in the usual way, as shown by the two grey
auxiliary lines: from the dot, go horizontally to the vertical axis; read off the
value indicated at the intersection point, in this case a luminosity of about
5-10% Lo and a temperature of somewhat more than 20 000 K.

In the diagram, you can clearly discern a linear structure going from bottom
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left to top right, and a cloud of dots hovering to the upper left of that linear
structure. Astronomers call the linear structure the main sequence, and the
stars in it the main sequence stars.

There is a way of include additional information in histograms and 2-
dimensional diagrams: use colour! In the simplest case, we can use colour
to distinguish between different populations of data points. For instance, let us
colour the points in the upper-left cloud on the Hertzsprung-Russell diagram
red. So far, the colouring hasn’t brought us any great advantage. The cloud
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Figure 26: Hertzsprung-Russell diagram using physical quantities (temperature and luminos-
ity) instead of spectral classes and luminosity classes. Data from DEBCat

was apart from the rest before, and it is apart from the rest now. But let us
carry this color scheme over to a histogram, for instance, plotting histograms
for the red and the blue dots side by side, using the same bins. The result for
a histogram of radii is shown in Fig. 27. Now we see that the stars correspond-

100 10!
Radius in Rg

Figure 27: Separate histograms for the blue and red data points from Fig. HRDiagramRedBlue

ing to those red dots have considerably larger radii than their main sequence
counter parts. The size distributions are clearly separate. Those red-dot stars
are veritable giants! We know from the Hertzsprung-Russell diagram that their
temperatures are somewhere between 4000 and 6000 K, going from reddish to
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yellowish. So these red giant stars were named with excellent reason.
Let’s look at a diagram plotting, say, radius against density, as in Fig. 28.
In that diagram, it is not clear which are the main sequence stars and which
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Figure 28: Plotting radius against density, both in solar units. Data from DEBCat

are the red giants. With the red-blue distinction, the situation becomes clear,
as shown in Fig. 29. Red giants are not only generally larger in radius than
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Figure 29: Plotting radius against density, both in solar units. Data from DEBCat

main sequence stars, they are also considerably less dense. Our data points us
in the right direction: in the modern view, main sequence stars go through a
red giant phase after they exhausted the hydrogen fusion fuel in their cores,
their atmospheres swelling up and cooling down in the process, leading to a
large, reddish star with drastically reduced mean density.

We can use colour more quantitatively than just to express class membership
in a two-colour scheme. Colour can add an (imperfect) third dimension to
our diagrams. In the version of a mass-luminosity diagram shown in Fig. 30,
each data point has the proper star color corresponding to it’s temperature (as
determined from the star’s spectral properties®). This color-coding immediately

S8Information about this can be found on http://www.vendian.org/mncharity /dir3/starcolor/
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allows you to identify the red giants, see that their mass range is a subset of
the mass range of the main sequence stars, but that the red giants are larger
and more reddish. Color scales can also be artificial, and different color maps
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Figure 30: Mass-luminosity diagram with data points plotted in the color corresponding to a
star’s temperature. Data from DEBCat

are available for the purpose. In Fig. 31, the color now indicates the radius of
each star, with the scale shown by the colorbar on the right. Clearly, stellar
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Figure 31: Mass-luminosity diagram with data points plotted using an artificial color map
that indicates the stars’ radii. Data from DEBCat

radii grow along the main sequence, but the red giants, in their little cloud of
data points above the main sequence, are larger still.

A good color map can make your diagram much easier to understand; a bad
one can be confusing. Also, you should take into account accessibility issues.
Your color maps should be accessible even to people with certain forms of colour-
blindness.? Unless you are plotting a spectrum, avoid the rainbow colour map.
Instead, consider color maps that have been designed to be accessible for those
with colour blindness, as well as to print well in black and white — for instance
the Viridis family of colour maps.

?Some information on this can be found on [https://betterfigures.org/2015/06,/23 /picking-
a-colour-scale-for-scientific-graphics/]
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Patterns in such diagrams indicate interesting relationships. Is there a linear
relation — do data points for certain physical quantities fall on a straight line
in a linear diagram? Or is there a power law at work, y ~ z%, in which case
the data points would fall on a straight line in a log-log diagram? In this way,
diagrams can help us find systematic relations between our data.

This is not as straightforward as it sounds, of course. In a two-dimensional
diagram, we can plot at most three different quantities (if we make clever use
of a color map). We could try all different pairs of physical quantities relevant
for the situation we are looking at, and might get lucky in finding interesting
relationships in that way. A three-dimensional diagram is possible, but would
need to be interactive so we can view it from all different sides to get a feeling
for the three-dimensional structures. Of course, the basic physical quantities
can be combined to yield compound quantities. Complex relationships be-
tween quantities, longer polynomials involving several quantities for instance,
or differential/integral relations, are much less straightforward to read off such
diagrams.

The typical way of extracting information about systematic relationships
from data is to fit a function to the data. Assume that we have data points
(x4,9;) for i = 1,..., N, each representing a pair of quantities. A common
measure for how well those data points satisfy a general relationship y = f(z)
is as follows.

If the relationship were to hold perfectly, then we would have y; = f(x;).
In real life, functional relationships are not that perfect. Even in cases where
the relationship y = f(x) is the basis for our set of data points, measurement
errors will lead to deviations. Moreover, exact relationships are rare; the much
more common case is that the relationship is approximate, and that data points
scatter around the curve y = f(z).

For a single data point, the quantity

Ay; = yi — f(x5) (2)

is a measure of the deviation of the data point from the relationship. What is
the best way of summarising the deviations for our data set as a whole? We can
say what is definitely not a good measure: taking the sum of all the Ay;, since
deviations may be positive and negative, and the sizeable deviations associated
with different data points could cancel each other out, skewing the result — we
could even get an overall measure of zero, indicating no deviation, in a situation
where the Ay; are huge, but cancel pair-wise!

To avoid this, we could take the sum of the absolute values |Ay;| but as we
shall see later on, it is useful for the measure we choose to be differentiable.
That why a better choice is the sum over the squares of the deviations,

N
S=3 lyi— ). (3)
=1

Commonly, we have an idea for the basic properties of the function f(z), but
not about the explicit form of the function. For instance, we might have reason
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to believe the function to be linear (since that is what an x-y diagram suggests),
f(z) = ax + b, but do not know the values for a and b.

In such a case, we can use the quantity (3) to find the best fit. Let us
make explicit that the function depends on the parameters a,b, namely as
f(x,a,b) = ax + b. For our set of data points and for any given pair of values

a,b, we have
N

S(a,b) = [yi — f(wi,a,b)]. (4)
i=1

Fitting the function to the data involves minimising S(a, b); since the expression
in question is the sum of the squares of the deviations, this is known as the least-
squares method. For linear functions, there is even an analytic solution: At
the minimum of S(a,b) as a function of a, the derivative of S(a,b) with respect
to a must be zero (this is why it was useful to choose S(a,b) to be readily
differentiable). The same goes for b; impose both of those conditions, and you
can find a and b directly. In the general case, no such analytical solutions are
possible, and the best fit is found numerically.

There are a number of ways to go from here, some more advanced, some less.
In fitting a function to data points, you can give different weight to different
contributions to (4) with the measurement errors for each data point; in this
way, those data points that are less-well known will also contribute less to the
choice of parameters. Then, there is the problem of outliers, that is, lonely
data points that are far from the rest, and probably not because of their physical
properties but because of measurement errors. Astronomers also make use of
Bayesian techniques in order to estimate the parameter values best fitted to
their model, or to compare different models with each other. All of these issues
are beyond the scope of at least this version of my basic introduction.'’

The problem of making sense of multidimensional data is of interest far
beyond astronomy, and a main task of what has become known as data science.
Astronomers apply numerous tools that have much more general application in
order to solve their data science problems. For astronomers, this is not a matter
of merely applying well-established methods and tools to new data sets. Instead,
the way that astronomers look at their data, and make their deductions, is
continually evolving. It is certainly more common for astronomers to derive new
results by utilizing new data, but it is equally possible to make new deductions
from an existing data set, by applying new methods.

As an example of a comparatively recent development, machine learning
has begun to play a role within astronomy. Machine learning comprises a certain
subset of algorithms that can be used to find pattern in data, often involving a
training phase during which the software learns about classifying certain kinds
of data before moving on to new classifications.!

After this general overview, let us consider astronomical data sets, and
explore ways of viewing or analyzing them. We start with astronomical images,

10Some additional information can be found in the classic paper by Hogg, Bovy and Lang
2010, [https://arxiv.org/abs/1008.4686].

1Some  information can be found in Ntampaka et al 2019
[https://arxiv.org/abs/1902.10159].
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and a simple application software for viewing them.

3 SAOImage DS9 and astronomical images

When astronomy is in the public eye, a large portion of the attention goes to
spectacular astronomical images. In this section, we will take a closer look
at the scientific versions of such images. The application software we will
use in this section is called SAOImage DS9. It was developed at the Smith-
sonian Astrophysical Observatory (SAO) and is available for download from
[http://ds9.si.edu/]. When you start DS9, it will look as in Fig. 32. Top left,

] ® SAOImage ds9
File
Object
Value
WCS
Physical X Y
Image X Y
Frame 1 X 1 0
_ edit view frame bin zoom scale color region wces analysis help
open save header page setup print exit
I 0 000000

10 20 30 40 50 60 70 80 90

Figure 32: The initial screen of DS9 right after the software has started

there are fields with information about the image(s); top right, two small win-
dows we will talk about later. Below, there is a horizontal menu with two rows.
I will call the top row the “main menu.” Whenever you click on a field in the
top row, the bottom row will display a set of associated commands. I will call
this bottom row the “secondary menu”. Below the secondary menu is the main
image window, with a color bar (currently greyscale) below that. There is also
a horizontal menu on top — on a Mac at the top of the screen, on Windows
or on Linux at the top of the window. I will call this the “top menu.” This is
mostly a duplicate of the menu with the two rows within the window, but it
does provide some additional options, and will occasionally be needed. If DS9
opens additional windows, those can come with their own top menu, different

36


http://ds9.si.edu/

from that of the main window. Details of what the menu items are called might
vary slightly from version to version; I have used version 7.5.

3.1 Loading a Hubble image

Let’s load an astronomical image file. We get our file from the Hubble legacy
archive at the Space Telescope Science Institute (STScl) in Baltimore, which
operates the Hubble Space Telescopes and other space telescopes. The legacy
archive is where all the older Hubble images are stored. It can be found at the
URL [https://hla.stsci.edu/hlaview.html]. There is a helpful search field. Let’s
search for M 16, the Eagle Nebula, by entering “M16” in the search field and
pressing “Search”.

You should get a very wide result screen like the one shown in Fig. 33. You

Figure 33: Search results from the Hubble Legacy Archive

will probably need to scroll right to see the columns 13 and 14 we are interested
in. In column 14, called “Dataset”, look for the data set names

e hst 05773_05_wfpc2_502n_wf
e hst_05773_05_wipc2_f656n_wf
e hst_05773_05_wipc2_f673n_wf

These were all taken on April 1, 1995; unless someone has recently taken many
more images of the Eagle Nebula, they should be on the first results page.
The image file belong to one of the most iconic Hubble images: the pillars of
creation. Each file should be around 53 MB in size. You can download the files
by either clicking the little shopping cart icon for each image and then going
to the shopping cart tab, or by right clicking on the shopping cart icon and
choosing “save link as”.

If you know astronomical abbreviations, you will be able to make some
initial sense out of these dataset names: hst, for instance is bound to mean
that we are downloading data from the Hubble Space Telescope. WFPC2 is
the “Wide-Field and Planetary Camera 2” on that telescope, wf says that we are
downloading the wide-field camera images. 502, {656 and {673 denote different
filters which have been placed before the camera for these respective images.
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We will combine the three images into a colour image — but it is going to be a
false-color images, since those three filters do not correspond to red, green, and
blue!

Last but not least, when you have downloaded the images, you will notice
that the filename extension indicates that these are FITS files, in the most
common format used for scientific images in astronomy; the filename extension
is either “fits” or possibly if you are on an older Windows machine, “fit”.

3.2 A first look at the Eagle Nebula M16

Now that we have the files safely stored away, we can open them using DSO.
To this end, go to the main menu row and click on “file” (which is probably
highlighted to begin with); from the secondary menu that appears directly
below, choose “open”. In the usual pop-up choose-a-file window, I'll choose the
first of the Hubble files we downloaded, hst_05773_05_wfpc2_f502n_wf_drz.fits.
Once the file is open, the DS9 window should look as in Fig. 34.

o0 e SAOImage ds9
File hst_05773_05_wfpc2_f502n_wf_drz.fits[SCI]
Object

Value 0.0163959

k5 a| 18:18:53.566 | | -13:50:00.944

Physical X 872.000 |Y 984.000

Image X 872.000 |Y 984.000

Frame 1 x 1 0

(fileyy edit view frame bin zoom scale color region wes analysis help

open save header page setup print exit

48 102 156 210 264 317 3n 425 478

Figure 34: Opening an HST Eagle Nebula image in DS9

The image is disappointingly black. We need to find a better brightness
scale to see what is going on. Astronomical images typically capture an amazing
dynamic range, that is, an amazing range of different brightness values for each
pixel (concretely, 65536 different brightness values per pixel, compared with the
256 of a typical RGB pixel). Displaying such an image on a computer monitor,
or printing it, can never do this range full justice. Instead, we need to pick and
choose — which part of the brightness range do we want to display, and which
way of compressing the brightness scale shows us the most information about
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the image?

There is no single right way of doing this, and there is no standard way that
will guarantee the best results for all possible astronomical pictures. Instead,
this is a matter of combining experience (your own and that of others!) with
some experimentation to arrive at a result that works for you. You should
always be aware that such a result is not a naked view of the astronomical data
— what you see is determined both by the astronomical data and by the choices
you have made in displaying that data. (Also note that these display options
do not change the image itself; the image file itself is unchanged, and you are
only changing the way you are viewing the data.)

To experiment a bit, go to the main menu and choose “scale”. From the
secondary menu that will come up, choose “zscale”. Where previously (in “min-
max” mode) the image had been displayed with the minimum pixel brightness
set to black, and the maximum pixel brightness to white, the colors are now
mapped to values closer to the median pixel brightness. As a result, your image
should look something like this in Fig. 35. This still looks fairly raw, and rather

[ ] e SAOCImage ds9
File hst_05773_05_wfpc2_1502n_wf_drz.fits[SCI]
aloo
‘WCS |
| Physical X‘, A\

|
|
|Image X\ Y |
Frame 1 X il 0 I'=

file edit view frame bin zoom ﬁ color region wes analysis help

- log power sqrt squared asinh sinh histogram min max —
o

-0.031 -0.023 -0.015 -0.0076 0.0001 0.0077 0.015 0.023 0.031

Figure 35: HST Eagle nebula image in DS9 with zscale applied

different from the pretty astronomy pictures you see in the media. But at least
we can discern some structures. The main window below the two rows of menus
only shows part of the image. In the overview window (second to right, on top)
you can see the whole of the image. The cyan frame in the overview window
marks the part of the image that is visible in the main window. Drag it around
(left-click the mouse and drag) to explore other parts of the image. Alterna-
tively, you can go to “zoom” in the main menu and choose one of the options in
the secondary menu to see the image as a whole (“zoom fit”), or in more detail
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(e.g. “zoom 27).

In the “scale” menu, you can also choose another compression method in-
stead of linear — see how it affects the view! (Again, the image itself is not
changed by your choice.) Also, instead of the grayscale display, you can go to
the main menu point “color” and select another color map.

3.3 Coordinates: Finding your way around the image

When your cursor is on the main image, what you will see will be something
like in Fig. 36. In this image, the tip of the cursor is placed on a star. The

| [ N ) SAOImage ds9
File hst_05773_05_wfpc2_f502n_wf_drz.fits[SCI]
Object

Value 0.293213 |

| fk&
Physical
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Frame 1

18:18:50.2864 |6 | -13:50:02.975

1349.6 Y 963.68
1349.6 Y 963.68
0.694444 | 0

fle  edit  view = frame  bin  zoom (JSGEIGM color  region  wes | analysis | help

|
[T e power sart squared | asinh sinh histogram min max ([ ESCRICHN
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-0.031 -0023 -0015 -0.0076 0.0001 00077 0.015 0.023 0031

Figure 36: HST Eagle nebula image with cursor on a star

detailed image (inset image top right) shows the star’s little disk, with DS9’s
own representation of the cursor on top. Let us take a closer look at the
information on the top left. “File” is simply the file name. If the header
identifies the object by name in a suitable way, that is what would be displayed
in “Object.” The “Value” field gives you the value of that particular pixel.

Below, we have the sky position information for the cursor, given in the
“World Coordinate System” (WCS). “fk5” tells you that the sky coordinate
system is defined using the reference stars of the Fifth Fundamental Cata-
logue (Fundamentalkatalog 5), which was published in 1988 by Astronomisches
Recheninstitut Heidelberg (ARI, now a part of Heidelberg University). The co-
ordinates themselves are those of the equatorial system, which is analogous to
latitude and longitude on Earth: longitude corresponds to the right ascension a
(sometimes abbreviated to RA or R.A.), latitude corresponds to the declination
(sometimes abbreviated to Dec or DE).
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Both RA and Dec are given here in the standard sexagesimal notation. Right
ascension is given in hours (in hour example: 18), minutes (18) and seconds
(50.2864), written as 18:18:50.2864. (In other contexts, it might be written
as 18" 18" 50°.2864, but the meaning is always the same: The first position
indicates the hours, measured eastwards along the celestial equator, starting
from the March equinox; 24 hours correspond to the full circle. The second
position indicates the minutes, with 60 minutes in a full hour, as expected; the
third the seconds, again with 60 seconds in a minute.

Declination is given in degrees northwards (positive sign) or southwards
(negative sign) from the celestial equator, which itself is at 6 = 0°. In the image,
the notation is again sexigesimal, with a southward (because of the minus sign)
13 degrees, 50 arc minutes and 2.975 arc seconds written as 13:50:2.975. (In
another context, you might see this written as 13°50'2”.975.)

If you go to “WCS” in the top menu, you can change the notation from
sexagesimal to degrees; the latter will show both right ascension and declination
as a decimal number denoting degrees, in our example 274.7095 for the right
ascension, and —13.9341 for the declination (in both cases with a few more
significant digits).

Just like in the usual geographical coordinate system, a difference of one
degree in declination corresponds to the same length, wherever we are on the
celestial sphere, just like a difference of one degree in latitude does. Differences
in right ascension, on the other hand, correspond to smaller angular distances
the closer you go to the celestial poles, analogous to what happens with ge-
ographic longitude. If you want to move the cursor around a bit to estimate
the angular scale of your image (how many pixels corresponding to, say, 10 arc
seconds), use declination for the purpose, not right ascension.

The "Image” coordinates below denote the X and Y coordinate of a pixel
within the given image. In a FITS file, the pixel in the bottom left corner
has the coordinate (1,1). If you zoom in, you will see that DS9 assigns this
coordinate value to the center of the pixel. The lower left corner of the lower
left corner has the pixel coordinates (0.5,0.5). In our example the “Physical”
coordinate is the same as the image coordinate. If the image you are looking at
is only a part of a larger image, you are likely to find the physical and the image
coordinates differ: The physical coordinates would still be those of the original
image, (1,1) the coordinates of the bottom left pixel of the CDD camera. The
image coordinates would be those of the smaller image, (1,1) the coordinates
of its bottom left pixel.

How does DS9 know which sky coordinates to map to the pixel coordinates?
That (meta-)information is contained in a special part of any FITS file: the
header.

3.4 Meta-Information: the FITS header

Astronomical images can only be interpreted correctly if you know the condi-
tions under which they were produced. What filter was used? How long was
the image exposed? When and where was it taken? FITS files include this
meta-information in a dedicated section called the header. We can inspect the
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FITS header of our image by going on “file” in the main menu, and choosing
“header”.

Once you do this, you are given two choices; the second one is the file name
with [SCI] appended. Start by looking at the first header, which looks like in
Fig. 37. You don’t need to understand this in detail (I certainly don’t!), but

® ® hst_05773_05_wfpc2_f502n_wf_drz.fits

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = @ / number of array dimensions

EXTEND = T

DATE = '2009-11-04"' / date this file was written (yyyy-mm-dd)
FILETYPE= "SCI . / type of data found in data file

TELESCOP= 'HST' / telescope used to acquire data

INSTRUME= 'WFPCZ ' / identifier for instrument used to acquire data
EQUINOX = 2000.0 / equinox of celestial coord. system

/ WFPC-II DATA DESCRIPTOR KEYWORDS

ROOTNAME= "hst_5773_05_wfpc2_f502n_wf' / rootname of the observation set
PROCTIME=  5.513971815972E+@4 / Pipeline processing time (MID)
OPUS_VER= "OPUS 2009_3 ' / OPUS software system version number
CAL_VER = '2.5.5 (Apr 17, 2009)' / CALWP2 code version

/ SCIENCE INSTRUMENT CONFIGURATION

MODE = "FULL' / instr. mode: FULL (full res.), AREA (area int.)
SERIALS = 'ON ' / serial clocks: ON, OFF

/ IMAGE TYPE CHARACTERISTICS

IMAGETYP= "EXT ' / DARK/BIAS/IFLAT/UFLAT/VFLAT/KSPOT/EXT/ECAL
CDBSFILE= 'NO ' / GENERIC/BIAS/DARK/PREF/FLAT/MASK/ATOD/NO
PKTFMT = 104 / packet format code

/ FILTER CONFIGURATION

FILTNAM1= 'F502N * / first filter name
FILTNAMZ= ' Y / second filter name
FILTERL 23 / first filter number (0-48)

FILTERZ = @ / second filter number (@-48)
FILTROT = 0.000000 / partial filter rotation angle (degrees)
LRFWAVE = 0.000000 / linear ramp filter wavelength

/ ARCHIVE SEARCH KEYWORDS

Figure 37: First header of the HST Eagle nebula image

some bits are fairly clear: among other things, the header lists the file name
convention, telescope and instrument name, date when this was processed, and
the filter F502N that was used to take the image. Information is encoded in a
two-part way: each particular chunk of information has a keyword (here shown
in blue, on the left) and an assigned value. The two are linked by the equal
sign. Often, this is followed by a slash, after which there is a comment with a
description of the keyword’s meaning.

If you scroll down, you can find different kinds of information: the position
of the Sun at the moment of observation is encoded there, the angle between
the Moon’s position and the pointing direction of the telescope, the observation
start time and end time. Some of those keywords are specific to the telescope,
instrument, organization or project in question. Others are more general. Un-
der EXPTIME, you will commonly find the exposure time in seconds, and under
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DATE-OBS the date of the start of the observation in year—-month—day format.
TIME-OBS gives the time of the start of the observations; the time zone is
Universal Time (UT). The multiple lines marked HISTORY typically contain
information about how the image has already been processed, which files were
used as flatfield or dark frame, and which software was used for the processing.

The [SCI] version is more image-specific, as you can see in Fig. 38. It gives

[ ] ® hst_05773_05_wfpc2_f502n_wf_drz.fits[SCI]

XTENSION= 'IMAGE ' / Image extension
|BITPIX = -32 / array data type
INAXIS = 2 / number of array dimensions
|NAXIS1 = 2150
|NAXISZ = 2150
| PCOUNT = @ / number of parameters
|GCOUNT = 1 / number of groups
|CRVALL = 274.7173822566667 / right ascension of reference pixel (deg)
CRVALZ =  -13.83106772194444 / declination of reference pixel (deg)

CRPIX1 = 1075.0 / x-coordinate of reference pixel

CRPIX2 = 1075.0 / y-coordinate of reference pixel

(D11 = -2.777777777777778E-05 / partial of the right ascension w.r.t. x
(D12 = 0.0 / partial of the right ascension w.r.t. y

(bz2_1 = 0.0 / partial of the declination w.r.t. x

CD2_2 = 2.777777777777778E-05 / partial of the declination w.r.t. y

DATAMIN = -281.3417 / minimum value of the data

DATAMAX = 49175.87 / maximum value of the data

VAFACTOR= 1.0 / velocity aberration plate scale factor
MIR_REVR= T / is the image mirror reversed?

ORIENTAT= 0.0 / orientation of the image (deg)

FILLCNT = @ / number of segments containing fill

ERRCNT = @ / number of segments containing errors

FPKTTIME= 49808.863201 / time of the first packet (Modified Julian Date)
LPKTTIME= 49808.86336699999 / time of the last packet (Modified Julian Date)
CTYPEL = 'RA---TAN' / first coordinate type

CTYPEZ = 'DEC--TAN' / second coordinate type

DETECTOR= 1 / CCD detector: PC 1, WFC 2-4

DEZERO = 314.0469 / mean bias level from EED extended register
BIASEVEN= 314.0734 / bias level for even-numbered columns

BIASODD = 314.0204 / bias level for odd-numbered columns

BIASEVNU= @ / uncorrected bias level for even-numbered column
BIASODDU= @ / uncorrected bias level for odd-numbered columns
GOODMIN = -6.06622 / minimum value of the "good" pixels

GOODMAX = 3438.672 / maximum value of the "good" pixels

DATAMEAN= 3.951247 / mean value of the "good" pixels

GPIXELS = 557471 / number of "good" pixels (DQF = @)

SOFTERRS= @ / number of "soft error" pixels (DQF = 1)
CALIBDEF= 82527 / number of "calibration defect" pixels (DQF = 2)
STATICD = @ / number of "static defect" pixels (DQF = 4)

3/

‘ATODSAT = number of "AtoD saturated" pixels (DQF = 8)

Figure 38: Second header of the HST Eagle nebula image

you lots of details about the instrument and telescope properties during these
particular observations, and important information about the context of the
data. Here, too, some keywords will be specific to the project in question, and
others more universal. NAXIS will tell you the number of axes you are dealing
with, in this case two of them. NAXIS1 and NAXIS2 will give you the width
and height of the image, in pixels. BUNIT will give you the units of the pixel
values. In this case, it is a generic “COUNTS/S”, counts per second, in other
cases it might be Jansky per beam or similar units.

The CRVAL1, CRVAL2, CRPIX1, CRPIX2 and the CD1_1, CD1_2, CD2_1
and CD2_2 contain the information that allows you to calculate, for each pixel,
the values of the two equatorial coordinates: right ascension and declination.
The CD values correspond to a matrix mapping the two coordinate systems to
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each other. Often, the axes of the WCS and the image coordinate systems are
parallel to each other. (You can check this in the overview window in the upper
right corner, second from the right, where the North and East directions are
shown as N and E, and the image coordinate directions as X and Y.) In that
case, CD1_2 and CD2_1 are zero, and for the usual square pixels, CD1_1 and
CD2_2 are equal (up to a sign) and denote the image scale. In our case, CD2_2
= 2.7777T77T7T7777778E-05 denotes the degrees that correspond to the width of
a single pixel; 2.7 - 107 degrees per pixel corresponds to 0.1 arc seconds per
pixel. CD1_1 has an extra minus sign because the X direction and the East
direction are anti-parallel in this image.

3.5 Making a colour image

As a nod towards pretty astronomical pictures, let us combine partial images
into an RGB color image. A professional astronomical image is usually taken by
black-and-white cameras through a filter. The reason is straightforward: When
your mobile phone camera or digital camera takes an image, that image, too, is
taken through an array of filters attached to the camera chip — red, green and
blue filters; the information obtained that way is used to interpolate and create
an image where each pixel is assigned an RGB color value. But this method
would not be sufficiently flexible for astronomy. First of all, the interpolation is
an additional step where information gets lost. Secondly and more importantly,
astronomers need to be able to use not only three different filters, but many
more — both wider filters that capture a certain wider wavelength range and
small-band filters that capture particular spectral lines.

Add to this the fact that most astronomical objects do not change appre-
ciably over human time scales, and you arrive at the astronomers’ methods of
taking a sequence of images, of a target object, each through a different filter.
These different filter images can be combined afterwards to produce an RGB
color image. In most cases, the result will be a false-color image, however, since
the astronomical filters used will not correspond to the proper red, green and
blue filters.

So let’s make a color image. Since we have played with various switches in
DS9, we should reset; the easiest way is to quit and restart the software.

Once DS9 is up and running again, create a color frame by clicking “frame”
in the main menu, and then “rgb” in the secondary menu. A little extra menu
will pop up, which can be seen in Fig. 39.

@ RGEB
Current View

Red ©

Green

Blue
Close

Figure 39: The RGB popup menu
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With the “red” option checked, go to “file” in the main menu and “open”
in the submenu and load hst_05773_05_wfpc2_f673n_wf_drz.fits. Next, check
green and load hst_05773_05_wfpc2_f656n_wf _drz.fits. You should already see
a superposition of the red and green parts at this stage. Finally, check blue
and load hst_05773_05_wfpc2_f502n_wf_drz.fits. There is your composite color
image, but it’s looking rather dark.

With the small RGB menu window active, go to the top menu (at the top
of your screen on a Mac, and at the top of your window frame in Windows).
Under the top menu point “Lock”, choose “scale”. That way, when you change
the scale, the change will affect all the three images equally. By setting the scale
to “sqrt” (a form of compression) and the scale limits to 99% (only possible
under “scale” in the top menu) I get an image that’s pretty close to the usual
appearance of the pillars of creation, cf. Fig. 40. The Hubble Space Telescope

[ XoN ] SAOImage ds9

File hst_05773_05_wfpc2_{673n_wf_drz.fits[SCI] |

Object |

Value r g b ]

weCs

Physical X W

Image X W

Frame 2 X 0.223152 0

file  edit view frame bin zoom - color region wes analysis help
linear log power - squared asinh sinh histogram min max zscale

-0.08 -0.073 -0.062 -0.046 -0.025 -0.00048 0.029 0.063 0.1

Figure 40: Colour image of the “pillars of creation” with DS9

images you can find in the media have had significant extra work applied to
them, up to and including a person going over the image region by region,
removing remaining impurities by hand, and cleaning up the boundaries.

3.6 Catalogs

In the end, we’re not here for the pretty pictures. We’re here for the science.
And since today’s science builds upon what was done before, we will look at
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ways o accessing the information that is already out there about the region
whose image we are looking at. We will work with an image from data release
9 (DR9) of the Sloan Digital Sky Survey (SDSS). The original SDSS was the
first large-scale digital survey, a pioneering project that provided astronomers
with large amounts of data that was of consistently high quality. Were, before,
astronomers had counted themselves lucky if they could do a statistical analysis
with a few hundred galaxies, the original SDSS gave them data on more than
900.000! The DRY is part of the third incarnation of the survey, SDSS-III.

I have chosen an image fairly randomly by going to https://dr9.sdss.org/fields/
and entering the RA 20.0 and the Dec 20.0 in the “Search by Object Coordi-
nates” and hitting “Submit”. On the results page, click on the link “g-band
FITS” to download the file shot through the SDSS g filter. Unzip the file to
obtain the unadorned FITS file named “frame-g-007923-5-0307.fits” which is
12.4 MB in size. Open that image with DS9. In order to look at the image,
choose a linear zscale.

Figure 41: Zoomed-out version of our SDSS image, with SDSS DR9 catalog stars circled in
green

For an image with accurate positioning data (contained, as we have seen, in
the FITS header), DS9 can show the positions of the known stars. To display
them, go to the main window’s top menu. From the dropdown menu “Analysis,”
go to the “Catalogues” dropdown sub-menu, from there to “Optical” and there,
choose “SDSS Release 9,” which is the catalog associated with the image’s data
release. If you zoom out sufficiently far, your main image will look as in Fig. 41.
The image, and the surrounding area, are covered in small green circles, and
each circle marks a star (or possibly other object) that is listed in the SDSS
DR9 catalogue.

At the same time, DS9 opens up a catalog window, as shown in Fig. 42.
Near the bottom of this window is a list of objects. Each object corresponds
to one of the green circles in the image. Use the scroll bar to look at the list’s
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00 SDSS Release 9
Catalog

Name SDSS Release 9
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a 1:20:01.9490 o +19:53:42.850 LU © | Update
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Max Rows 5000 Found 1501
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019.8503570(+19.8931690(11 + 6 J011924.08+1
019.8513080C+19.9192680C1 + 6 J011924.3141¢
019.8532590(+19.8981060C1 + 6 J011924.78+1
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019.8563300(+19.938175001 + 3 J011925.51+1¢
019.8567220(1+19.9195360C1 6 J011925.61+1¢
019.8568850(+19.8862090(1 + 3 J011925.65+1
019.8569730(+19.9078380(1 + 3 J011925.67 +1!
019.85761500+19.9254680(1 6 J011925.82+1
Status Done

Retrieve Cancel Filter Clear SAMP Plot Close

Figure 42: Catalog window for the SDSS DR stars within our window

different columns, and you will see that, in addition to the object’s position
(RA and Dec), there is information about the object’s brightness: the different
apparent magnitudes, as measured using the SDSS filter set ugriz, correspond-
ing to specific filters centered in the near-UV (u filter, magnitude is given in
the umag column), the blue-green part of the spectrum (gmag), the red region
(rmag), the border region between red and near-infrared (imag) and an infrared
filter beyond that (zmag).

If you click on a line in that table, corresponding to the entry for a specific
object, the object’s marker circle will blink red a few times in the main window,
and centre the view on that object In that way, you can zoom in on specific
objects and have a closer look at them. Conversely, if the main window is active
and you go to “Edit” in the top menu and, in that submenu, choose “Catalog”,
then you can click on any of the little catalog marker circles in the image, and
in the catalog window, the corresponding row will be visible and highlighted.
(Choose “None” in the “Edit” dropdown menu to go back to the normal editing
mode.)

The filter field in the catalog window allows you to filter out those parts of
the catalog that do not meet your criteria. For instance, entering “$gmag < 177
(where gmag is the name of the column, to which you have added a dollar sign
$, which denotes in some programming languages that this is a variable) and
clicking on the “Filter” button near the bottom of the window will only keep
those objects whose g-magnitude is smaller (brighter!) than my = 17. You
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can connect several such conditions with && for a logical “and” or || for logical
“o17, e.g. “$gmag < 17 || Sumag < 16” if any object with either m, < 17 or
m, < 16 is fine.

The sort functionality of the catalog window provides another possibility for
finding your way around the catalog data. To the right of the “Sort” marker is
a menu that lets you choose any of the columns of the catalog. To the right,
by checking a box, you can choose whether to sort the catalog using values in
that particular column in ascending or descending order (increase or decrease).

3.7 Photometry with regions and statistics

Let us continue with the SDSS image we had opened in the previous section. If
you haven’t done so, choose the SDSS DR9 catalog. Sort the catalog by gmag
in increasing order so you can pick out specific values for gmag. Go to the star
with gmag 19.659. It’s at around RA 20.0714 and Dec +19.9777, corresponding
to the pixel coordinates X = 1819, Y = 1215.

Figure 43: A circular region, not selected (left) and selected (right). The much smaller green
circles are the catalog indicators and not related to the region itself

Next, we are going to define a circular region around this star. First, I zoom
in considerably, going to “Zoom 4” and clicking “Zoom in” once. In order to
do add the region, go to the top menu and, from the dropdown menu “Edit”,
choose the item “Region.” Now we are in region mode. Still in the top menu,
from the dropdown menu “Region”, go to the sub-menu “Shapes” and select
“Circle”. Now, click on the star we have chosen. A larger green circle outline
appears, marking the region we have chosen, cf. the left part of Fig. 43. Click
within that circle, and the region is selected, indicated by the four dots framing
it, as in the right part of Fig. 43. Now you can pull the circle around by clicking,
holding and dragging. Centre it on the star.

By double clicking on the circle (while still in the “Region” edit mode), you
can bring up an extra window describing the region, cf. Fig. 44. Let us call
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this the “region window,” for short. The window allows you to read off the

[ ] Circle
Number 101199

Text

1:20:17.1806 +19:58:39.378
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Center

ks &)

Radius 11.000

Apply Close

Figure 44: The extra window for our circular region

basic properties of your region — in the case of a circle, center and radius. You
can also change the properties by hand, giving them specific values. We will
change the radius of our circle, making it as large as possible while keeping it
sufficiently small not to include any other stars than that in the centre. Trial-
and-error suggests to me that around 11 arc seconds is a good value in this
particular case — we just about avoid the next star to the lower left of our
region. To change the radius value to 11 arc seconds, first change the unit of
the radius to “arcsec” by choosing that value from the dropdown menu that
initially reads “Degrees”. Input the value 11 for the radius. Press “Apply” so
that your choice is applied to the region. You will probably see the region circle
get a little larger in consequence.

As long as the small region window is active, you can go to the top menu, go
to the dropdown menu “Analysis”, and choose “Statistics”. Yet another window
will pop up, this one with information about the pixels in the selected region, cf.
Fig. 45. This window provides us with several interesting bits of information. It

[ XON J Circle

center=20.071586 19.977605

fk5

1 pixel = 1.5836955 arcsec

reg sum error area surf_bri surf_err
(arcsec**2) (sum/arcsec**2) (sum/arcsec**2)

1 15.337259 3.91628 376.546 0.0407315 0.0104005

reg sum npix mean median min max var stddev rms

1 15.337259 150 0.102248 0.0316505 -0.225433 3.10852 0.134722 0.367045 0

Figure 45: Statistics window for our region

shows us the center of the circle, and also the pixel scale, mapping image pixels
to arc second intervals on the sky. A bit lower, we are provided with the sum of
the pixel values within the region, in this case C1 = 15.34, and its measurement
error, the region’s area in square arc seconds, namely A; = 376.55, as well as
the resulting surface brightness.
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The bottom line shows you additional statistical descriptors for the pixel
values within the region, namely mean, median, minimum, maximum, variance,
standard deviation and root-mean-square (rms).

You can also get DS9 to display a histogram of pixel values. Activate the
region window and, in the top menu, from the dropdown menu “Analysis,”
choose “histogram”. In our case, most of the values appear to be centered
around zero, cf. Fig. 46. That appears to be the background plus noise.

Histogram

o | |||| | | | ||
T T

T
0 1 2 3
values

Figure 46: Histogram for the pixel values in our selected region

Let us use the statistics function for regions to perform a simple aperture
photometry measurement. In most FITS files of astronomical images, a pixel
value is proportional to the light falling onto that particular portion of the
detector (although possibly there may be an overall offset added in), that is,
proportional to the flux density of the incoming light. (When comparing dif-
ferent images, you need to be a bit more circumspect — for instance, if those
images have different exposure times, and the pixel values correspond to the
energy that was collected, you will need to rescale in order to make a valid
comparison between an object in one and an object in the other image.) In the
case of our SDSS, the BUNIT keyword tells us we are dealing with a property
that is proportional to a value in Jansky, and thus a flux.

Let us make a relative brightness measurement within the image, as follows.
First, a second measurement on our first selected star, this time with a smaller
circle that just about takes in the star and its immediate neighbourhood; I
choose a radius of 8 arc seconds, and get a sum of pixel values Cy = 14.17 and
area Ao = 200.82. The brightness density of the annulus bounded by the two
circles, in pixel values per square arc second, is

Cy —Cy
Cbg Al _ AQ : (5)
After all, C; — C5 is the sum of the pixel values in the bigger circle minus
the sum in the smaller circle; their difference is the sum of pixel values in the
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annulus. Dividing this by the area of the annulus A; — Az in square arc seconds
gives us the brightness density. In our case, we have c,, = 0.006658 per square
second.

The amount of light reaching us from within the smaller, second circle is the
light we receive from the star plus the light reaching us from the background
sources within that circle. We assume that the background contribution per
pixel from the little circle is about the same as for the surrounding annulus,
which would add up to a total background contribution of ¢4 - A2. Subtracting
this from the sum C5, we get an estimate for the amount of light [ received

from the star, namely o

z::cb-;ﬁf:iii-fb. (6)
In our particular case, 4 = 12.83. Note that subtracting the background contri-
bution also subtracts any overall offset values, so [ should indeed be proportional
to the amount of light that was received from this star.

Let us repeat this measurement with another star. Going down the list, I
select the one with g magnitude 17.529, near the bottom of the image frame,
at X = 1123, Y = 34. Repeating the same measurements with a larger circle
13 arc seconds in radius and a smaller circle with a radius of 8 arc seconds, I
obtain C7 = 108.36, A1 = 534.70 square arc seconds, Cy = 107.57, Ay = 200.82,
and applying formula (6), I obtain {5 = 107.09.

The flux ratio between the two is

5 _ g5 (7)
la

so in this sense, and in this filter band, the second star is a bit over 8 times

brighter than the first.

We can cross-check that against the published g magnitudes. After all, given
that the collecting area and the exposure time are the same in both cases, the
ratio of our values [g and [ 4 should be the same as the ratio of the intensities of
the two stars. Inserting this into equation (1) for the astronomical magnitudes,
we find that we should have

ma —mp = —2.5-log <§2> = 2.30. (8)
The difference in the stars’ catalog g magnitudes (gmag) is 2.13. Even with our
simple measurements, we have reproduced the relative brightness of those stars
with a deviation of 0.17 mag, corresponding to an error in their relative flux of
17%. Acceptable for a relatively crude, off-the-cuff measurement.

Given suitable data, we could measure changes in brightness in the same
way: Compare a non-variable star (or an ensemble of several such stars) with
a star whose brightness varies over time, and document the varying star’s light
curve. Given suitably precise measurements, you can even detect a transiting
exoplanet in this way. That will take an accuracy around 1%, though, and spe-
cial preparations: slightly unfocussing the telescope so that the star’s disk will
cover a larger number of pixels; adjusting exposure time so as to take advantage
of the dynamic range of the CCD and, for longer-term comparisons, taking into
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account air mass (that is, how the amount of atmosphere the starlight traverses
changes with the star’s position in the sky), among other things.

3.8 Profiles

DS9 also gives you the tools to create brightness profiles from astronomical im-
ages. We will take an example image from the THINGS survey by Fabian Walter
et al.,'? the data of which is available for download from the THINGS project
website at [http://www.mpia.de/THINGS/Data.html]. THINGS stands for
“The HI Nearby Galaxy Survey” and provides observations of nearby galax-
ies in and around the HI 21 cm line, undertaken with the Very Large Array
(VLA) in Socorro, New Mexico.

For the following, please download the “ro” version of the “moment 1” file for
the galaxy NGC 3198, which is named “NGC_3198_RO_MOM1_THINGS.FITS”.
This is a radial velocity map, with each pixel showing the average speed at which
atomic hydrogen gas in that region of the galaxy moves away from us or towards
us. Open the file with DS9, and from the FITS header, you will see that the
units for each pixel are “METR/SEC,” meter per second.

Let us go into region mode again, going to the top menu, there to the
dropdown menu “Edit”, and in that menu, on “Region.” We choose a particular
type of region: in the top menu, open the dropdown menu “Region” and in the
sub-menu “Shape,” choose “Projection”.

Figure 47: A profile shape laid along the major axis of the galaxy NGC 3198’s THINGS first

moment map.

Now, click on one point of the image, hold your mouse button and drag to

12 As described in Walter et al. 2008,

52


http://www.mpia.de/THINGS/Data.html

another point. DS9 will join the two points with a slim rectangle and, at the
same time, open a new window that shows the profile of pixel values along that
slim rectangle. Pixel values are averaged over the direction perpendicular to
the profile; in that way, you can iron out some of the local variations (including
noise) and get an accurate representation of trends on larger scales.'® If the
profile window has gotten lost, select the region and double-click the region
window; in the top menu, under “Analysis”, uncheck and re-check the “Plot
2D”, and the profile window should re-appear.

Click on that rectangle while still in region mode, and little dots appear
— you can drag the outer dots around to change the position, orientation and
length of the projection area, and the centre dot to change the width. In
our example, I have laid the profile, 6 pixels wide along the major axis of the
apparent ellipse formed by the galaxy NGC 3198 in the sky, see Fig. 47. The
corresponding profile curve can be seen in Fig. 48. When the profile curve
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Figure 48: Radial velocity profile of NGC 3198 based on the first moment map.

window is active, you can go to the item “File” in the top menu and, from the
dropdown menu, choose “Statistic”. That will give you minimum, maximum,
mean and a few other statistical descriptors about the data. In our case, we
can see that the radial velocity grows anti-symmetrically with distance from the
galaxy’s center. The mean radial velocity is at 670 km/s, which is the velocity
at which the galaxy as a whole recedes from us. The curve shows how different
parts of the galaxy move towards us or away from us as the galaxy rotates. (In

131f you want the sum of the pixel values and not the average, you can change that in
the top menu associated with the region window — under “Analysis”, you find a “Method”
sub-menus where you can set a check mark at “Average” (default) or “Sum”.
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order to determine the rotation speed of the galaxy, we would need to de-project
the radial velocities, though, as the disk of the galaxy is tilted relative to our
line of sight.) The fact that the curve flattens out at larger radii is a piece of
the puzzle that is the evidence for dark matter: Going by the galaxy’s visible
matter (in the shape of stars and gas), one would expect the rotation speed to
decrease beyond a certain distance from the centre. The fact that it doesn’t
points to a surrounding halo of additional, non-luminous matter.

4 TOPCAT and table data

Next, let us look at application software for dealing with higher-level astro-
nomical data, such as catalog data or, more generally, tables. The software
is called TOPCAT, which stands for “Tool for OPerations on Catalogues And
Tables.” It was developed by the astronomer Mark Taylor at the University of
Bristol, and its tagline is “does what you want with tables”. TOPCAT can be
downloaded under this link [http://www.star.bris.ac.uk/ mbt/topcat/]. It can
do many, many things with tables, including creating diagrams, histograms,
all-sky plots and the like. We will only scratch the surface of TOPCAT’s func-
tionality. You can find more comprehensive tutorials on the TOPCAT page,
notably here: [http://www.star.bristol.ac.uk/ mbt/topcat/#further].

TOPCAT is based on Java, so if you haven’t got a suitably recent version of
the Java Runtime Environment (JRE) on your computer, you will need to down-
load it from [http://www.oracle.com/technetwork/java/index.html]. (Fortu-
nately, installing Java is comparatively pain-free!)

4.1 Opening a table file

When you open TOPCAT, it looks as shown in Fig. 49. There will be an ad-
ditional row of menu keywords — on Windows and Linux across the top of
the window, on Mac at the top of the screen, which I will call the top menu.
TOPCAT opens additional windows for different functionality, but this here
is the TOPCAT base window. If you close that window, you will close TOP-
CAT. Near the top, there is a row of icons; Fig. 50 shows a few that we will

[ ] e TOPCAT

a8y EelEe | [UUe@o] &E

rTable List———————— Current Table Properties.

Label:

Location:
Name:
Rows:
Columns:

Sort Order: 4
Row Subset:

Activation Action: Broadcast Row

SAMP.

[ 7/124M LB O Clients: | (®) & &

Figure 49: The TOPCAT main window

need in the following. A mouse-over will also tell you what each icon does.
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Let us load an example table from a file. Specifically, go to the data page of

= iz D P m
FRaH
Load Table View Data Sky Plot TAP Plane Plot Histogram

Figure 50: Some of the TOPCAT icons

the Galaxy Zoo project at [https://data.galaxyzoo.org/]. Specifically, we will

look at the Galaxy zoo data release 2, table 5 “Table 5 - Main sample, spec-
troscopic redshifts” near the middle of the page. You can see there are several
possibilities for download: a csv file, a fits file and a VO table file. Let’s down-

load the fits file. The meaning of the columns can be found under this link:
[https://data.galaxyzoo.org/data/gz2 /zoo2MainSpecz.txt]. The scientific pa-

per describing the data release is Willett et al. 2013, [https://arxiv.org/abs/1308.3496v2].
The file itself is zipped (that is, compressed so as to make its file size smaller).
TOPCAT should be smart enough to unzip it on its own.'

In order to open the file, click on the “Open Table” symbol in the TOPCAT
base window (cf. Fig. 50), or go to the “File” tab in the top menu and choose
“Open Table” there. In most cases, we can leave the “Format” selection in
the “Open Table” window on “(auto)” and TOPCAT will find out on its own
the type of the table file, and open the file accordingly. If you should get an
error when attempting to open the file, you can try to specify the table type
explicitly using the “Format” dropdown menu.

Open the “Filestore Browser”, select the file choose zoo2MainSpecz.fits.gz,
the Galaxy Zoo list of classified galaxies, and click on “OK” to load it. Topcat
now looks as in Fig. 51.

TOPCAT _

ece _ -
aBlY BlxlEle 2] wile(do] k@)X (& v ]e
Table Li: Current Table Propertit
'/Prep/. 2Mai fits.g:

Columns: 233‘

Sort Order: {p |

Row Subset: | All %]

f Activation Action: (no action) | [ | Broadcast Row

T e o Ciens: @& s

Figure 51: TOPCAT after having loaded our file

The name of the table file, the number of rows and the number of columns
are displayed, and some of the icons that were initially greyed out (because

Y1f it doesn’t, then, on Windows, you will need to use software such as 7—zip to unpack the
file. On a Linux distribution, running the gunzip command in the command line should work
(“gunzip zoo2MainSpecz.fits.gz”). On a Mac, double clicking on the file in the finder should
do the trick.
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they only work once a table is loaded) are now accessible. By clicking on the
“View table data” icon (cf. Fig. 50) or by going to the top menu, choosing the
“Views” drop-down menu and clicking “Table Data”, you can get an overview
of your table data, column names included, in a new window, as in Fig. 52.

ece o
B[E ox]

Table Browser for 3: zoo2MainSpecz.fits

TOPCAT(3): Table Browser

specobjid dr8objid dr7objid ra dec rastring decstring sample  gz2class |t
1| 1802674929645152256 588017703996096547  160.99 11.7038 10:43:57.70 +11:42:13.6 original  SBb7t
2 | 1992983900678285312 587738569780428805  192.411 15.1642 12:49:38.60 +15:09:51.1 original  Ser
3 | 1489568922213574656 587735695913320507  210.802 54.349 14:03:12.53  +54:20:56.2 original  Sc+t
4 | 2924083625089591296 1237668496859529246 587742775634624545  185.303 18.3827 12:21:12.82  +18:22:57.7 original  SBe(r)
5 | 1387165355897546752 1237658491208794136 587732769983889439  187.367 8.74993  12:29:28.03 +08:44:59.7 extra Ser
6 | 1833070384862226432 588017725475782665  188.523 7.69329  12:34:05.41 +07:41:35.8 extra Ec
7 | 1809324500555163648 1237661948639772687 588017702391578633  175.245 11.4711 11:40:58.75 +11:28:16.1 original  Sb+t
8 | 1625960870049769472 1237660636001665059 588297864730181658  176.533 47.4948 11:46:07.80 +47:29:41.1 original  Sen
9 | 1907389949162842112 588017704545812500  190.986 13.1267 12:43:56.58 +13:07:36.0 original  Sct
10 | 1818435055295424512 1237661812812349452 588017566564155399  186.445 12.6619 12:25:46.72  +12:39:42.7 extra Sbt(u)
11 | 1633799289501149184 1237661434844938280 588298663573454909  184.049 47.8832 12:16:11.71  +47:52:59.7 original  Ser
12 | 588870424280983552 1237651735226417233 587726014001512533  194.505 1.57585  12:58:01.19 +01:34:33.1 original  Sc(r)
13 | 2252962056078649344 1237664819287949338 587739098063044622  184.373 37.8074 12:17:29.44 +37:48:26.5 original  Sen
14 | 3132375113912051712 587742615095935051  234.132 16.6078 15:36:31.68 +16:36:28.0 original  Sb+t
15 | 876021909865654272 1237653617475452940 588009371227258884  180.551 62.1372 12:02:12.21 +62:08:14.1 original  Sb+t
16 | 1178913180705908736 587733410447491082  218.195 49.4579 14:32:46.85 +49:27:28.5 original St
17 | 379506367435663360 587724648188543033  192.057 -3.33284  12:48:13.65 -03:19:58.2 original  SBb2I(0)
18 | 2513080399412881408 1237665441511768131 587739720286863441  184.403 29.608 12:17:36.78  +29:36:28.9 original  SBb(r)
19 | 1806112827006543872 588017704536244309  168.654 12.8177 11:14:36.99 +12:49:03.6 original  Ei(0)
20 | 2221553680774096896 1237664668973531242 587738947748626521  159.068 37.3247 10:36:16.25 +37:19:28.9 original S+t
21 | 1815085667714099200 1237661950790598708 588017704542404685  183.072 13.2052 12:12:17.27 +13:12:18.7 original ~ Er
22 | 1146264831163131904 1237657590858776636 587731869633871916  179.117 55.1252 11:56:28.14 +55:07:30.8 original  Sb7t

Figure 52: The TOPCAT main window with table data loaded

Click the icons next to “View table data” and you will be given either
the general table data (such as the number of columns) or an overview of the
columns and their properties, respectively. The column overview includes a
description (where available), and the type of variable stored.

4.2 Making a sky plot

TOPCAT provides several possibilities of viewing your data. Let’s begin with
functionality that is specific to astronomy. When you are given a catalog of
astronomical objects, you might be interested in seeing where on the celestial
sphere these objects are located. Are you looking at a full-sky survey, or a
catalog that spans only one particular region? Let us ask this question for
the Galaxy Zoo list of galaxies we have loaded into TOPCAT. Where on the
celestial sphere are these galaxies located?

To this end, go to the main window (where we clicked the “view data”
icon previously) and click the sky plot icon (cf. Fig. 50). Alternatively, in
the top horizontal menu, choose Graphics — Sky Plot. Standard catalog data
will include columns given RA and Dec, right ascension and declination, of the
objects in question. TOPCAT is usually smart enough to find those columns,
and plot your objects’ positions in the sky. The result will be displayed in
an extra window, as shown in Fig. 53. You can click and hold with your left
mouse button on the sky sphere, dragging it around. That way, you can see
that the SDSS did a detailed study of a larger patch of the sky, but also studied
selected strips of sky in nearly the opposite direction. The physical motivation
for this: If you look only in one direction, you might miss that the universe has
completely different properties in another direction. Checking up on at least
some sample regions elsewhere in the sky is not foolproof, but can at least go
some way towards showing you that the overall properties of the universe indeed
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Figure 53: The TOPCAT Skyplot window

do not depend on your direction of view (in other words, that the universe is
isotropic).

The Sky Plot window comes with its own variety of options for customi-
sation. For instance, by clicking on “Axes” in the bottom left field, you can
easily vary at least some aspects of the visualisation. If you click on “Axes”,
the options field directly to the right will change. In the tab “Projection” you
can change the projection from the default “sin” (which shows you a projec-
tion of the celestial sphere) to the world-map like “aitoff” or to the rectilinear
coordinate plot “car”. Under the tab “grid”, you can shift the slider “Grid
Crowding” to make the grid of coordinate lines denser or less dense. Have a
look around, and try some of the options.

Before we explore TOPCAT a bit further, let us look at other ways of
obtaining a table to work with: not as a file to be loaded, but directly from an
astronomical data service: via the Virtual Observatory.

4.3 Connecting with a Virtual Observatory (VO) service

Astronomical data bases are getting larger and larger, and downloading all the
data beforehand becomes more and more awkward as the file size increases.
Fortunately, there are ways of searching online data bases for exactly the data
you need for your project — that way, you only handle the data you really need.
For tables, the necessary search can be handled by the ”table access protocol”
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TAP, using the astronomical data base query language ADQL (which is very
similar to SQL). Is TOPCAT still open? If not, open it please.

In the top menu, go to the tab ”VO” (for ” Virtual Observatory”), and select
the item ”Table Access Protocol (TAP) Query”. Alternatively, you can click
on the TAP icon (cf. Fig. 50) in the main TOPCAT window. The window that
should pop up can be seen in Fig. 54. For data access, we will connect with a

| [¢][a[x

ice  ResumeJob Running Jobs |

T 8y Service Properties |

Keywords [ And |
Match Fields: (¥ Table Name (¥ Table Description ¥ Service
| Find Services |

555 All TAP services (134

I TAPVizieR (37926) - ivo:/ /cds vizier/tap
[ HEASARC (971) - Ivo
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B 55A (367) - ivo://wfau.roe.ac.uk/ssa-1ap
I GAVO DC TAP (161) - ivo
[ 5DSS DR7 (147) - Ivo

1 SDSS DRS (129) - vor//wiau
1 SDSS DR6 (129) - Ivor//wial
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TAP URL: [Select service from panel above or enter service URL here

[ Use Service

Figure 54: The Table Access Protocol (TAP) window

specific VO service — that is, a data base that offers online access. We can do
so either by choosing a service from the list in the window, or by using the field
near the bottom to enter the URL of a specific astronomical data base service.
We will choose the ESA data base for the astrometry satellite Gaia, which is
simply listed as GAIA in the TAP window. Double-click on GAIA and you
will get additional information, as shown in Fig. 55. In the field on the left,
you can see the specific tables you can access using the chosen service. In this
example, in the folder gaiadrl (that is, from the first data release) you have
gaiadrl.allwise_best_neighbour, gaiadrl.allwise_best_neighbourhood, and so on
(which names are only partly visible in the window as it is shown above —
expand the window by moving its boundaries if you need to!).

To learn more about any such table, specifically about the kind of infor-
mation stored there, go to that table’s entry in said window on the left, and
double-click on it. For our example, we scroll down to gaiadr2 and double-click
on gaiadr2.gaia_source, which is the main table listing results from the second
Gaia data release for the stars (or other point sources) examined, such as posi-
tions, parallaxes, proper motion and, for some of the stars, physical parameters
like the effective temperature. This data release, published on 25 April 2018,
revolutionized astronomy, and after one year had led to a remarkable 1200
papers based on the data — 100 papers per month!

Let us find out the properties that the table is listing for each object. Once
we have left-clicked on the specific table in the list on the left, we need only
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Figure 55: The TAP window with the GAIA service selected

click on the “Columns” tab in the sub-window on the right; TOPCAT will
show us information about these properties. Picturing the table as consisting
of various columns and a certain number of rows, each column corresponds
to a specific property, while each row corresponds to an astronomical object
included in the table. For the table gaiadr2.gaia_source, the result looks as
shown in Fig. 56. For instance, the sixth line in the list on the right tells us

Table Access Protocol (TAP) Query

e0ce
| 12| [e]

[ Select Service Resume Job | Running Jobs |
Find: [ @Service | @Schema | @ Table [N@IIIGITN| OFKeys Hints |
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d 2. Csso_orbits designation VARCHAR &4 Unique source designation (unique across all Data
B8 gaiadr2.aux_sso_orbits source_id BIGINT ™ Unique source identifier (unique within a particulai
 gaiadr2.dr1_neighbourho random_index BIGINT o Random index used to select subsets
) oaiadr2 gaia_source . |ref_epoch DOUBLE [/ Reference epoch
£ gaiadr2.gsc23_best_neigl ra DOUBLE ™ deg Right ascension
= gaiadr2.gsc23 _neighbour ra_error DOUBLE ™ mas Standard error of right ascension
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Figure 56: Columns for the Gaia DR2 data set

that there is a property named “ra” in the table. It is stored as a DOUBLE,
that is, as a particularly precise floating point number, and it has the unit
“deg”, degrees. That property (as per the description given there, as well as
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per universal astronomical convention) is the right ascension. So for each object
in the table where that property is available, the table lists the right ascension.
Two below is “dec”, which is again a DOUBLE with units “deg”, each object’s
declination.

So far, none of that data is available to us to manipulate or to plot. In
order to access data from that or any other VO table, we need to execute a
query, asking the data base to return a specific set of data. Such queries are
formulated in the Astronomical Data Query Language (ADQL), which is a close
kin to the more general data base query language SQL (pronounced “Ess-Que-
Ell” or “Sequel,” depending on whom you ask). Our queries go into the bottom
entry field in the TAP window, which is headed “ADQL text”. Let’s talk about
the basics of ADL.

4.4 Basic ADQL queries

Data base queries are not all that different from what you would request in nat-
ural language. “Dear data base, could you please select for me right ascension
and declination for all objects that are listed in the gaiadr2.gaia_source table,
and return the result for me as a list?” In ADQL, that request would be

SELECT ra, dec
FROM gaiadr2.gaia_source

— without the niceties, of course. Here, “ra” and “dec” are the table’s names
for these properties; we looked those up in the “columns” list. SELECT and
FROM are parts of the ADQL language. I have written them in all caps here;
that is not a requirement, but makes the query more readable for us humans,
as it clearly separates the language’s commands from the names of properties
and data bases.

If we were to run this query, it would likely take a long time; after all,
Gaia DR2 provides those properties for more than 1.3 billion sources! Let us
restrict our query somewhat by telling the data base that we want to look only
at some specific area in the sky. Let us look at the Andromeda galaxy. In
natural language, we would now ask “Dear data base, could you please select
for me right ascension and declination for those objects that are listed in the
gaiadr2.gaia_source table and that are close to the position of the Andromeda
galaxy?”

What is close to the position of the Andromeda galaxy? Luckily, since that
is a common astronomical question, ADQL has a function for that. Let’s first
see the query as a whole:

SELECT ra, dec

FROM gaiadr2.gaia_source

WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec),
CIRCLE(’ICRS’,10.684708,41.268750, 3.2))

The first two lines are the same as before: We select right ascension ra and dec-
lination dec from the Gaia DR2 source table. The rest of the query begins with
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“WHERE” encodes our condition. We do not want all the results for ra, dec,
but only those results WHERE a specific condition is met. That condition is
defined after the keyword WHERE. The CIRCLE(’ICRS’,10.684708,41.268750,
3.2) is a circular region in the sky — its center point in the ICRS (“Inter-
national Celestial Reference System”) coordinate system is at right ascension
10.684708 degrees and declination 41.268750 degrees, which is the center of the
Andromeda galaxy’s location in the sky. The circle’s radius is 3.2 degrees. The
POINT(’'ICRS’, ra, dec) is a point in the sky with right ascension ra and decli-
nation dec, again referring to the ICRS coordinate system. The “CONTAINS”
is a function that takes a point and a region (the region, in our case, is the
aforementioned circle) and returns 1 if the point is contained in the region, and
0 otherwise. Taken everything together, our query should select ra and dec for
all Gaia DR2 objects contained in a 3.2 degrees circle around the center point
of Andromeda.

To execute the query, we need to write it (or paste it) in the ADQL text
window, as shown in Fig. 57. If we now press the “Run Query” at the bottom,
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Figure 57: An ADQL query entered in the TAP window

the query will be executed. (Or not, if we have made a syntax error — if
there is an error, we will get an error message.) During the download, there
will be a temporary download window with an animated progress bar. Once
the download is complete, the main TOPCAT window will push itself into the
foreground, showing that the table with the results has been loaded and is ready
for inspection. Our table has 419,949 rows, that is: we have retrieved ra and
dec for 419,949 astronomical objects!

Let’s take a quick look at our data by clicking on the “plane plot” icon
(cf. Fig. 50) to produce a simple plot. The result is shown in Fig. 58. This is
quite nice! Mind you, this is not an image of the Andromeda galaxy. This is
a diagram showing point sources identified by Gaia DR2, in other words: this
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Figure 58: A plane plot of the Andromeda galaxy, based on Gaia DR2

is a plot showing Andromeda as traced by separate stars identified within the
galaxy! Note that TOPCAT has automatically switched to some type of density
plot, where regions with more point objects in them are darker. If TOPCAT
had simply plotted all the data points on top of each other in red, we would be
looking at a solid red plane.

Imagine now that we want to look at the whole sky, not just at a small
region, but that we still do not want to download all the Gaia DR2 data. One
way out would be to just look at the brightest stars in the Gaia DR2 catalog,
as the following query does:

SELECT TOP 1000000 ra, dec, phot_g_mean_mag
FROM gaiadr2.gaia_source
ORDER BY phot_g_mean_mag ASC

Let’s look at what is new with this query. First of all, we are selecting one
additional property: phot_g-mean_mag, which is the magnitude (that is, the
brightness expressed in the usual logarithmic scale of astronomy) of the object
in question in the G filter band. But the SELECT has been amended as well: we
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are only selecting the TOP 1000000, the first million of rows of our result. Top
with respect to what? That is specified in the last line, where we ask the data
base to order the table so that all values of phot_g mean_mag are in ascending
order (ASC; descending order would be DESC). So our TOP 1000000 selects
the 1000000 objects with the smallest magnitude value, that is: the 1000000
brightest objects in the resulting table. When we make a plane plot of those,
we see that there is a curved band where there are particularly many stars,
Fig. 59. That band is the Milky Way (in a plane ra-dec plot). Note that
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Figure 59: The brightest stars from the Gaia DR2 catalog

the brightness is reversed: Where there are many stars, the plot is dark. Those
regions where parts of the Milky Way are hidden behind dark clouds, and where
in consequence we see fewer stars, are brighter in this plot. If you want to see
how the Milky Way is stretched as a ring across the sky, make a Sky Plot of
this data.

In this case, we looked at the brightest stars. What if we do not want to
single out bright stars, but instead select a representative sample of all stars?
Many data bases provide auxiliary information which helps us to do just that.
Consider the following query:

SELECT TOP 1000000 ra, dec
FROM gaiadr2.gaia_source
ORDER BY random_index
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The basic structure is as before: We select only the top N rows, and we have
ordered the table from which those top rows are selected. But this time, we
order by the entry for random_index, which is defined as follows: For a data set
with N entries, the column random_index contains a random permutation of
the integers from 1 to N. If we select the top M rows from the table, ordered
by the random_index column, we should get a random sub-sample from the
table. Note that this is not a generic ADQL feature, but instead relies on the
Gaia team having supplied an extra column random_index for the purpose. The
result, shown again as a plane plot, is shown in Fig. MilkyWayPlot2. By not
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Figure 60: Plot of a random sub-sample of Gaia DR2 stars

focussing on the brightest stars, but on all kinds of stars, we can now make
out some extra structure, namely the Large Magellanic Cloud and the Small
Magellanic cloud, our nearest neighbouring galaxies, in the bottom left corner!

At other times, we need to combine data from more than one table. For
instance, the GAIA service offers a table gaiadr2.vari_cepheid containing all the
stars in DR2 that the system has (so far) identified as Cepheids. The table does
provide the variable star data, such as the fundamental pulsation period of the
Cepheid in question. What the table does not contain is elementary astrometric
information such as ra and dec.

So what do we do if we want a table listing ra, dec and pf for the DR2
Cepheids? We must somehow identify which object in the one table corre-
sponds to which object in the other table. In ADQL, this is done via the JOIN
operation. The complete query in our case is

SELECT s.ra, s.dec, c.pf

FROM gaiadr2.gaia_source AS s
JOIN gaiadr2.vari_cepheid AS c
USING (source_id)
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Begin by looking at the second row. Again, we are selecting FROM a table,
namely from gaiadr2.gaia_source, but this is followed by “AS s”. The “s” is
simply a name we are giving to that table. If you look in the first row, that
name is added to the properties we are selecting from that particular table: ra
and dec are now written as s.ra and s.dec to make clear where they come from.

The third line is “JOIN gaiadr2.vari_cepheid AS ¢”, which is the command
to join that table to the first one. The second table, too, gets a short name,
namely “c”. In the first row, the property we select from the second table has
a c. in front, namely c.pf for the fundamental period of the Cepheid.

How are the tables to be joined? How do we know that a row in the
first table and a row in the second table refer to one and the same object?
Fortunately, both tables include a unique identifier for the astronomical objects
listed, namely the source_id. The last line in the query, “USING (source_id)”,
tells the data base that when selecting object data for one object from the first
and from the second data, we should go by the source_id. Our result includes
only cases where such a match has been successful — so in this case, our result
is a table listing ra, dec and pf for all 9575 objects that are contained both in
the Cepheid table and in the source table.

4.5 Selections and subsets

TOPCAT has helpful functionality that allows you to select subsets directly
from a 2D plot. It happens fairly regularly that we are interested in comparing
a subset of data with the rest. And in those cases where the subset is defined
directly in terms of characteristic properties, it helps to have a way of defining
such a subset directly in a diagram. Recall the Hertzsprung-Russell diagram in
section 2.7. In that diagram, the red giants form a separate group. Wouldn'’t it
be helpful if we could just mark out that particular region right in the diagram
itself, and then explore all the other properties of that particular subset?

That is one of the things TOPCAT allows you to do. As an example, let us
look at open star clusters with Gaia. In order to find members of an open star
cluster, it is not enough to look at the region of the sky where the star cluster is
located — our view of that region is likely to include both stars that are much
closer and stars that are much further away than the cluster we are interested
in.

In the TAP window, execute the following query:

SELECT ra, dec, pmra, pmdec, bp_g, phot_g_mean_mag

FROM gaiadr2.gaia_source

WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec), CIRCLE(’ICRS’,12.1083,85.2550,
0.4))

We are getting ra and dec, but also the proper motion (that is, the motion
on the celestial sphere) in the ra and dec directions, pmra and pmdec, respec-
tively. bp_g is the blue minus the green brightness of the object, which serves
as a measure of colour, and phot_g_mean_mag is the magnitude (brightness) in
Gaia’s broad G band, which can stand in for the object’s overall brightness.
Once the table has loaded, click the “Plane Plot” icon (cf. Fig. 50). The 2D
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Figure 61: RA-Dec plot of the region around NGC 188

plot window will open; part of it is shown in Fig. 61, which is a RA-Dec plot
of the stars we have retrieved. There is no straightforward way of telling which
of the stars belong to our cluster, and which don’t. In the bottom-right part
of Fig. 61, there is a line “X: ra” and directly below “Y: dec.” To the right of
each line are two small arrow symbols. Click those to choose a table column
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Figure 62: Proper motion plot of the region around NGC 188

other than ra for the X coordinate, and other than dec for the Y coordinate. In
particular, choose X as “pmra” and Y as “pmdec”. Now you are plotting the

proper motions of the stars in our table; the plot itself should now look as in
Fig. 62.
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Most of the stars are distributed symmetrically around the origin (pmra=0,
pmdec=0). But there is a marked concentration, seen as a dark grey dot, that is
offset to the bottom left against the overall distribution. In order to see it more
clearly, let us zoom in. There are several ways of doing that. On my touchpad,
swiping upwards with two fingers do the trick. (Clicking and moving my finger
moves the chosen region around in the window.) A mouse wheel would do the
same. If that doesn’t work, you can always click on the “Axes” symbol in the

pmdec [ mas.yr**-1
| |

pmra [ mas.yr**-1

Figure 63: Zoomed-in proper motion plot of the region around NGC 188

lower left part of the window, choose the “Range” tab, and adjust the range
either by entering minimum and maximum values directly or by changing the
sliders. Do so to get a closer look on the offset concentration, as in Fig. 63. That
concentration is our star cluster. Such star clusters form from one and the same
molecular cloud, and inherit the clouds overall velocity — with small variations,
as the cluster stars themselves attract each other. That is why selecting a subset
in a velocity diagram, in this case the two velocity components orthogonal to
the line of sight, is a suitable way of selecting all the cluster stars, distinguishing
them from other stars that might lie in the same direction, but are unlikely to
move at the same velocity.

In the zoomed-in image, we can now choose a suitable subset. Look at the
top row of icons in the Plane Plot window, as shown in Fig. 64. The icon I
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Figure 64: The top row of the “Plane Plot” window

have marked with the red A is the “Draw Region” icon. Click it, and you can
draw (by holding your left mouse button pressed and dragging) a region onto
the plot, delineating an area that will be filled gray as you draw. In Fig. 65,
you can see the small gray region that I have drawn, right where the off-center
concentration of stars is. You can also see that the “Draw Region” icon now
features a check mark. Clicking on that icon and its check mark signals to
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Figure 65: Marked subset of the proper motion plot of NGC 188

TOPCAT that you have drawn your desired region, and that TOPCAT should
now create a subset based on that selection. In response, TOPCAT will open

[ J New Subset

New Subset Name: ngcl88
Add Subset

Add and Set Current Subset

[<>]

Transmit Subset | $ | All Clients (1) |

Cancel

Figure 66: The “New Subset” window

up the “New Subset” window shown in Fig. 66. Enter a name (as I have, in
this case: “ngcl88”) and click on “Add Subset” to create the new subset. (If
you are dissatisfied with your choice, click on “Cancel” and you can start over
again with selecting your subset.)

Now, when you go back to the plotting window, you will see the subset
marked in a different colour; in Fig. 67, in blue. In the lower-left subwindow
of Plane Plot, go to the line representing your data (in our case, the lowest,
of which you can just about make out 21: TAP, marked in blue as selected in
Fig. 67). In the tab “Subset” (already selected in Fig. 67), I have removed the
checkmark from “All”, so now only the subset ngcl188 is visible. In that way,
we can make plots or histograms for the subset only.

4.6 More on plotting

In the preceding section, we have already looked at basic plots, and learned
how to choose custom X and Y axis values from the columns of our data set.
Let us do some more plotting, and create histograms, for the subset (stars
within the open cluster NGC 188) we have created in that section. To that
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Figure 67: Plane Plot with marked subset

end, let us again select the data points object in the bottom lower sub-window
of Plane Plot (as in Fig. 67), click on the “Position” tab, and select bp_g as
the quantity to be plotted along the X axis, and phot_g_mean_mag for the Y
axis. Next, in the bottom left sub-window of Plane Plot, click on “Axes” and
choose the Coords tab. Larger astronomical magnitude values correspond to
lower apparent brightness, and it is customary to invert a magnitude axis, so
brighter objects will be further up. In the Coords tab, we can achieve this by
clicking “Y Flip”. (In passing, note that we could flip the X axis as well, and
that other options include giving the X and/or the Y axis logarithmic scaling.
Also, with “Aspect lock” we can force an equal aspect ratio, that is, make sure
that both X and Y axis are plotted to the same scale.) If you had changed the
plot scale before, as I did in the previous section, you will also want to go to the
“Range” tab and revoke any range restrictions you might have made, pulling the
X and Y range sliders back to their respective boundaries. The resulting plot
is shown in Fig. 68. The diagonal bottom-right to upper-left structure is the
main sequence. Near the top, there is a turn-off point, with an S-shaped swerve
to the right. There is interesting physics behind this: In our main sequence,
the most luminous stars are near the upper left (blue and bright). But those
stars spend the shortest time on the main sequence! Presumably, all the stars
in our open cluster have formed at around the same time, since that is how
open clusters come into existence: as the result of group star formation from
one and the same giant molecular cloud; after some time, the cluster disperses.
Thus what we see near the top of the main sequence of NGC 188 amounts to
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Figure 68: Color-magnitude diagram of NGC 188

the shortest-lived stars having left, or being in the process of leaving, the main
sequence to become red giants, moving upwards (giants are brighter!) and to
the right (red giants are reddish!) as they do so.
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Figure 69: The Form dropdown menu

While TOPCAT does not provide for general fitting, it can be used to
produce a linear fit. To this end, proceed as in section 4.5 in order to select
the cluster’s main sequence stars as a subset. Display only that subset. With
the data set selected, go on the “Form” tab, click on the big green cross to add
a new form. The dropdown menu is shown in Fig. 69. From that dropdown
menu, select “Add LinearFit”. TOPCAT will fit a line to your data points, and
when you select the LinearFit form and scroll down, it will show you the best-
fit parameters it has chosen, as well as the correlation, cf. Fig. 70. Note that,
for TOPCAT, both the data point representation (“Mark”) and the linear fit
(“LinearFit”) are merely different forms of representing the same data. Other
forms, including more complex ones like XY error bars or ellipses, or a text
label, can be added in the same way we have added the linear fit.
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Figure 70: Linear fit to the main sequence stars of NGC 188

We can also add an additional data set. Let us deselect the linear fit and
the main sequence subset and go back to the colour-magnitude diagram for
NGC 188. Following the same procedure as in section 4.5, select the stars in
the region of the open cluster M 67, starting with the TAP query

SELECT ra, dec, pmra, pmdec, bp_g, phot_g_mean_mag

FROM gaiadr2.gaia_source

WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec), CIRCLE(’ICRS’,132.8250,11.800,
0.4))

and once more selecting a small area around the (clearly visible) concentration
in the pmra-pmdec plane. In the Plane Plot for M 67, I can then add the NGC
188 data as an extra data set. There are two ways of doing this. Either you go
to the icons visible directly underneath the plot sub-window. These icons are
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Figure 71: Icons in the Plane Plot window, located directly below the displayed plot

shown in Fig. 71. If you click the panel I have marked with a red A, TOPCAT
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will add another data set (“positional plot control”) to the plot. Click on that
data set in the bottem left sub-window, and you will find you can choose which
of the data sets that you have loaded into TOPCAT (cf. the table list in
the main TOPCAT window) you mean to plot here. Alternatively you can go
to the top menu that is shown while the “Plane Plot” window is active and,
from the “Layer” sub-menu, select “Add Position Control”. For the NGC 188
data, you can once more select the pmra-pmdec subset that represents the star
cluster, and select only that sub-set. When you now plot the colour-magnitude
diagram, colour bp_g against brightness phot_g mean mag (again with the Y
flip as an astronomical convention), you can see the separate plots for both of
the star clusters, as in Fig. 72. There are two differences between the data point
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Figure 72: Colour-magnitude plots for the open star clusters NGC 188 and M 67

distribution for the two star clusters. First of all, the main sequence for M 67
is brighter than for NGC 188. Since we have no reason to assume that the light
from one of the clusters is shifted to a different colour relative to the other,'”
the simplest assumption is that this is because M 67 is closer to us than NGC
188. We can make a rough quantitative estimate of distances here, as follows.
Recall the window where we chose which column to plot in the X and which in
the Y direction. In that column, instead of giving the column’s name, we can
write a more complex expression — such as the column name plus a constant
value. By trial and error, I find that adding 1.4 to phot_g_mean_mag for M 67, 1
can make the densest portions of the main sequence overlap, cf. Fig. 73 (in the
bottom part of the figure, you can see where I have added 1.4 to the g magnitude
by hand — if needed, you can write much more general functional expressions
into that little window, involving more than one of the column names, too!).
Recall that, from the formula (1) for astronomical magnitudes, the magnitudes
are related to the intensity of the light we receive from an astronomical object.
That intensity is proportional to an object’s intrinsic brightness and to the
inverse of the square of the object’s distance to us (inverse square law). When
two main sequence stars have the same colour, we expect them to have the same

15This could happen: If there is more cosmic dust between us and the one cluster than
between us and the second cluster, we would expect the first cluster to appear more reddish.
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Figure 73: Colour-magnitude plots for the open star clusters NGC 188 and M 67

intrinsic brightness. For such objects, the ratio of the intensity of light reaching
Earth is inversely proportional to the ratio of the squares of their distances
r1,72; by (1), this means their apparent magnitudes are related as

_ 7‘% . 1
mi —mo = —2.5- log 2 =5-log|— |, (9)

1 T2

so that
ML q02(mi—ms), (10)
T2
With m; —ms = 1.4, we can estimate that NGC 188 is about twice as far away
from us as M 67. According to the Simbad astronomical data base'®, M 67 is
between 0.9 and 0.99 kpc away, NGC 188 between 1.7 and 2.3 kpc, so our rough
estimate is consistent with the known distance measurements.

The shifted version of Fig. 73 shows clearly that for NGC 188, some of the
less bright stars have started to swerve of the main sequence and become red
giants. NGC 188 must be older than M 67, given that in NGC 188, less bright
stars are already entering the red giants stage. Indeed, M 67 is estimated to
be around 4 billion years old, NGC 188 more than five billion years (making it

one of the oldest open star clusters we know).

SAccessed by entering the identifiers in the web form at [http://simbad.u-
strasbg.fr/simbad /sim-fbasic], scrolling down to “Collections of measurements”, selecting and
displaying “distance”.
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4.7 Histograms

Next, let us look at some histograms. There is no separate histogram window,
as you can add histogram data to an ordinary Plane Plot window, but there
is a short-cut in the icons of the TOPCAT main window (cf. Fig. 50) which
directly produces the Plane Plot window configured for histograms. Choose the
pre-selection for, say, the NGC 188 region data set, and click on the histogram
icon. A histogram based on values in the first column of your data set pops up.
By selecting your histogram in the bottom left window (it should be selected by
default!), you can again choose different table columns for the X axis. Choose
phot_g_mean_mag, for instance, and you will be rewarded with the histogram in
Fig. 74. This histogram is a combination of physics and measurement bias. In
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Figure 74: Histogram for the g brightness in the stars in the region of NGC 188

general, less luminous stars are much more common than luminous ones. Also,
there are only very few stars close to us, and many more at greater distances;
with increasing distance, the apparent brightness becomes less, as well. Both
of these reasons are what explains the increase in the histogram from left to
right. The fact that the histogram comes to a fairly abrupt end on the right is
because the Gaia mission has a certain limiting magnitude beyond which stars
are too faint to be included in the analysis.

By clicking not on the data itself in the lower-left sub-window, but on
“Bins”, you can customise the histogram. Under the “Histogram” tab, you
can use a slider to adjust bin size, or enter the size explicitly in a field. The
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“Bin Phase” slider shifts bin position. In the “General” tab, you can change
your histogram to be cumulative, if that is what you want. Selecting subsets,
or re-using subsets that have already been defined for your data set, is another
possibility, as is displaying two histograms in the same window.

4.8 A quick look at a spectrum

Spectra play a key role in astronomy. As a special case of a Plane Plot in TOP-
CAT, let us download a sample galaxy spectrum from SDSS, more concretely:
for data release 8, let us pick the object with the id 1237659161195249685,
which at least for me is the default when I open the DR8 object explorer at
[http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp]. In the SpecObj sub-
menu on the left, click on FITS to download the spectrum as a FITS file by the
name of spec-1330-52822-0304.fits.

To take a quick first look at the spectrum, open it in TOPCAT like you
would open a table (cf. section 4). You will see that this spectrum actually
opens as several tables, corresponding to different HDUs of the FITS file, as
shown in Fig. 75. If you click on each of the tables, its name will be displayed.

eo0e TOPCAT
2 (o= (2
| a8y Blsl&le | [Wie/do] %X &«
’»Table List rCurrent Table Properties
1: spec-1330-52822-0304.fits X "
2: spec-1330-52822-0304.fits-2 Label: 'spec-1330-52822-0304.fits
3: spec-1330-52822-0304.fits-3 Location: /Users/poessel/Dropbox/Didaktik/Praktika/IntSt
4: spec-1330-52822-0304.fits-4 Name: COADD
5: spec-1330-52822-0304.fits-5 Rows: 3,809
6: spec-1330-52822-0304.fits-6 Columns: 8
7: spec-1330-52822-0304.fits-7 Sort Order: G [ &
8: spec-1330-52822-0304.fits-8 : e
9: spec-1330-52822-0304.fits-9 . Row Subset: | All 7|
Activation Action: | (no action) | [ ) Broadcast Row
rSAMP-
_ 26/ 124 M Messages: O

Figure 75: TOPCAT main window with SDSS DRS spectrum loaded

COADD is the spectrum we want. SPECOBJ just contains general information
about the object whose spectrum this is, while SPZLINE describes the spectral
lines that have been identified in the spectrum. The files starting B1 and Rlare
different exposures of the (overlapping) blue and red portions of the spectrum,
recorded on separate chips; they have been added up and combined to give the
COADD part we will use now.

Select the COADD part of the table and click the Plane Plot window icon
(cf. Fig. 50) or, alternatively, choose Graphics — Plane Plot from the top menu.
In the Plane Plot window, change the X and Y values — X should be loglam, the
logarithm of the wavelength, and Y should be flux. You can effect the change
by clicking on the arrow buttons to the right of the field, or alternatively using
the field entry as a dropdown menu.
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A spectrum is not just a collection of data points representing independent
objects. It is a sample of data points from a continuous distribution curve.
Thus, it makes sense to plot the data points as a connected line instead of as
separate points. To this end, in the Form tab, open the “Forms” dropdown
menu (with the big green plus sign; for the menu itself, cf. Fig. 69), and create
a new line plot by clicking the “add a new line form” button. Then unselect
the existing Mark form directly above, to hide the separate data points.

Finally, click on Axes in the lower-left sub-window, go to the Range tab, and
adjust the X subrange upper and lower limit, to display the details in a more
restricted wavelength region. By clicking in between the two limit buttons and
dragging, you can drag around the wavelength region you are looking at. All in
all, this should now allow you a fairly informative quick look at your spectrum,
Fig. 76. What is still a bit unusual is that we are plotting the logarithm of
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Figure 76: A quick look at an SDSS spectrum, using Plane Plot

the wavelength on the X axis. To change that, replace “loglam” in the X axis
field by “exp(In(10)*loglam)” — now the X axis is showing the wavelength, in
Angstrom (where 1A= 0.1 nm), which is much better if you want to read off
the positions of certain physical features, such as spectral lines. The result is
shown in Fig. 77.

As we have seen in these first sections, there are quite a lot of things you
can do with application software, in this case DS9 and TOPCAT. For simple
tasks, such application software is perfectly sufficient, and it wouldn’t make
much sense to re-invent the wheels it provides. This is particular true for a
something that you should routinely do when you prepare to settle a new, and
possibly unfamiliar data set: taking a quick look at given data and getting a
feeling what that data is about. On the other hand, as your analyses become
more involved and more complicated, chances are you will be needing more
flexibility and more power, and will need to move to a programming language.
That is what the rest of this script is about.
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Figure 77: A quick look at an SDSS spectrum, with linear wavelengths shown, using Plane
Plot

5 Getting started with Python

Application software will only get you so far. As you follow where your research
project leads, you are bound to come to the point where you need more flexibil-
ity, and more functionality, than such software can provide. The next step is to
make the transition to a programming language. In astronomy, one of the most
popular, if not the most popular, programming language is Python. Popular-
ity has tangible consequences — a popular programming language is bound to
have a large community of active users, you are bound to find answers to your
problems and questions on platforms such as Stackoverflow or in other forums,
and specifically for a programming language that is popular in astronomy, you
are bound to find that other users have written helpful modules or libraries that
implement helpful astronomy-related functionality.

What follows will not replace a basic introduction to Python; before you read
on, you should probably familiarise yourself with the basics of the language.'”
If you have written code before in another language, that is bound to help —
certain concepts, such as loops or if-conditions, are fairly universal to coding.

Once you have installed Python, you can and should work through the

Our summer interns at Haus der Astronomie are frequently in this situation as they
prepare themselves for the internship; a number of them have reported that they found
[https://www.codecademy.com/en/learn/python] helpful as a first introduction.
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examples presented in the following sections. As you become more advanced,
you will continue to learn by doing, by solving specific problems, by getting
familiar with new techniques — and by googling your Python questions, or
parts of your error messages, which is surprisingly effective, given that there is
a large Python community out there that has answered an amazing variety of
questions on platforms such as Stackoverflow.

5.1 Installing Python

Cruel, but true: Some of the most complicated, and potentially frustrating
operations come at the very beginning, as you install Python on your computer.
On a Magc, things should be fairly simple. If you are working on a Linux
machine, you (or whoever installed Linux on your machine!) probably know
enough about what you are doing that installing Python should work. If you
are on Windows, things might be more difficult.

My recommendation, in general, is to install Anaconda python, which is
available for Mac, Linux, and Windows and can be downloaded for free at
[https://www.continuum.io/downloads]. Anaconda comes with many useful
packages for astronomy, or science in general, installed (Astropy, Numpy, Scipy,
...). If you are reading this as part of a course, another installation might have
been recommended by your instructor — or, a promising trend, Python might
be provided to you in the form of Jupyter notebooks, accessible in your browser
window with no installation required. Astrobetter, a highly useful website
with helpful hints for astronomers, covering a variety of helpful issues, has a
page on how to install python for astronomy, as well, which you can find here:
[http://www.astrobetter.com/wiki/Python+Setup+for+Astronomy]. Impor-
tant: For the following, I will assume that you have installed some
version of Python 3.

Anaconda also comes with a helpful programming environment called Spy-
der, which makes it (comparatively) easy to write, run, and debug Python code.
So let’s assume you have installed Python successfully, and started the Spyder
software.

5.2 Using Python in Spyder

When you open Spyder, its basic layout should look as in Fig. 78. I have added
big red letters for later reference. If you are on Windows or on Linux, you
might see a menu bar saying “python file edit search” etc. directly above the
icon bar; on Mac, that same menu bar will be at the top of your screen when
Spyder is active. Again, we will refer to this as the top menu.

If your window arrangement looks totally different, you might want to use
the top menu bar, going to View — Window Layout and clicking on “Spyder
Default Layout” to give you the default layout. (Personally, I prefer to drag the
separator at the right border of A some way to the right, enlarging the window
A at the cost of the two windows B and C.)

For now, we will only use the basic functionality. In window A, we write
the code we want to save, and run. You should definitely save the Python
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Figure 78: Basic Spyder layout

code you are writing in this window. Conversely, you can load and execute files
containing code that you had written earlier.

In window C, with the tab ”IPython Console” selected, we can see the
results of our code. If our code prints anything, this is where we will see it. If
we plot any diagrams, this is where they will be displayed.

Window C has one additional, very practical functionality. Whenever we
program something more complicated, we will write it down as a proper pro-
gram/script in window A. But if we merely want to try some line of code very
quickly, we can also enter it directly into window C, press return, and see the
result of that particular command immediately.

For instance, if we want to know the current value of the variable a after
having run our program, simply enter a and press return, and the value of a
will be displayed. For instance:

In[0]: a=1.6
In[1]:
OQut[1]: 1.6

In a bit more detail, in the first row, after the prompt “In[0]:”, I have typed
“a=1.6" and then hit return (enter). The program has accepted my input,
but does not produce any immediate output. Instead, it offers me another
opportunity for input, this time numbers “In[1]:” — and there, I type simply
“a” and hit return. This time, the program does return an output value, namely
the value of the variable “a” — with the preface “Out[1]:” it returns the value

We will use this ”direct mode” of executing a command in the following
in a number of places where I am introducing some simple new concept, or
command, and direct execution is the simplest way for you to see what the
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command does.

Note that, depending on what you did before, the numbers characterising
your input and output will vary. If I repeat the operation immediately, starting
with the input prompt “In[2]” the software displays, then the whole input-
output sequence would now look like this:

In[2]: a=1.6
In[3]: a
OQut[3]: 1.6

The exact number displayed for each input and possible corresponding output
will change, counting up during each session. That is why, in all future examples
of live interaction with the system, I will leave out the numbers altogether. Our
simple sequence of defining a, and then retrieving its values, then looks like this:

In: a=1.6
In: a
Out: 1.6

In order to run one of your programs that you have written in window A,
press the green play arrow in the horizontal list of icons at the top. Fig. 79 shows
the left-hand part of that horizontal bar, to show you the green arrow, which
looks like the universal play (video, song, ...) symbol, and its neighbours. Let

® @
DR EPrHHGCENC==» B
006 Editor - /Users/poessel/untitled0.py (]

Figure 79: Part of the top bar of Spyder

us have a look at the icons. The first from the left is the “New File” icon, which
produces a new Python script window for you to write code in. The second
from the left is “Open File” which opens an existing file. Third from the left
is the “Save” icon — as everyone will tell you, save your file frequently, please!
We will ignore the other icons for now and return to the green play button.

Imagine that, in window A, you have written the following program (the
first lines will have been there when you created a new file):

#!/usr/bin/env python
# —*— coding: utf-8 —*-

nnn

Created on Mon Jul 17 13:12:11 2017

Qauthor: poessel
nnn

print( "Hello world!")

This is the traditional first program. Let’s go through this: The first line is only
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important if you run the program from the command line as an executable file.
It tells the computer which software to call up to run the program, in this case:
Python. The second line is a technical one. It tells the computer that whatever
text follows uses not only ASCII characters but could also contain certain special
characters (such as the German Umlaute 6, &, etc.). This particular set of
possible characters is known as ”utf-8”. What comes next is commented out,
and merely gives anyone reading the script information about when it was
created, and by whom.

Only the last line, print( "Hello world!"), is the command we want
executed. So this is the program we want to run! In order to make it run, you
should now press the green play button.

If this is the first time ever you have pressed the green play button in Spyder,
there will be a pop-up window asking about working directories, configuration
and more. Just press OK. This window will not bother you again. If this is the
first time you have pressed the green play button after creating a new file, the
file will be called something like “untitled1l.py”, and once you press the play
button, Spyder will ask you to save the file, and give it some proper name.
Please do that.

Now that we're ready, press the green play button again. Now your program
will run, and in the IPython Console in window B (choose the correct tab if it’s
not visible!), you will see its output. It will look something like this:

In: runfile(’/Users/poessel/pythDir/examplel.py’,
wdir=’/Users/poessel/pythDir’)
Out: Hello world!

Under ”In”, spyder is telling us that it is running a particular file, in this
case examplel.py (as I named it earlier). The “wdir=""is followed by the file’s
working directory. This is important if you need to open files, or write out your
results into a file. If you don’t specify another directory, files you are using
are assumed to be in the working directory (and there will be an error message
if they aren’t, and the software is looking in vain). Other directories can be
specified relative to the working directory. For instance, if you try to open a file
“figures/thisFig.png”, then “figures” is assumed to be a subdirectory of your
working directory.

Now that you have learned about executing code that you have written in
window A, and writing small snippets of code into window C, there are potential
pitfalls you should know about. When you start a script from window A, or
execute a small snippet in window C, the execution does not start from some
blank slate. Instead, variables you have defined before are already defined, and
modules you have loaded before are already loaded. In most cases, this “hidden
state” is unlikely to lead to confusion, but in some cases, it can. A simple
example: Your program might rely on a certain variable to have already been
defined. In the situation where you write the program, and test it, running
it again and again, it could be that this condition is met only because of the
hidden state your program is in after having run another script, or having run
the script in question before. In that case, you will get an error message as
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soon as you try to run that particular code from scratch.

Moving on: a word on commenting your code. There are two ways of adding
comments to your code. Use them as often as possible — if you don’t, then
even you yourself might not understand what you have written, if you revisit
your code after a while. Adding the hashtag symbol declares that everything
from there until the end of the line is a comment:

# This is a comment
This is not a comment (and will give an error message!)

For comments spanning several lines, use three double quotation marks in a
row to mark both the beginning and the end of the commented-out section:

nnn

This is a commend
which can span

several lines.
nmnn

In window A, a hashtag followed by two percent signs, #\%\%, has an in-
teresting effect: spyder will draw a separating line, and mark the region your
cursor is in (delineated by those separating line, the beginning and the end of
the file) in yellow. Fig. 80 shows an example. In this case, the lower region,

A B
ODeB%RE PG E I =)
Q6 Editor - /Users/poessel/Dropbox/Didaktik/Praktika

8 |® Wes.py I° test-sep.py* I

1

2

3 i

4 Created on Sat Jul 22 15:06:35 2017
5

6 @author: poessel
7

8

9 print "I am not currently active"
10

11

12

13 print "I am currently active!"
14

15|

Figure 80: Using hashtag-percent-percent for zoning in Spyder. The two specific play symbols
have been labelled in red as A and B, by me

from the #\%\% to the end of the file, is marked in yellow (except for the line
the cursor is in, which is marked in pink). Note that, to the right of the green
play symbol, there are two others that show a region marked in yellow; I have
labelled those A and B in Fig. 80. If you click on the icon labelled A, Spyder
will execute only the part marked in yellow. If you click on the icon labelled
B, Spyder will also execute the part marked in yellow, and then move on to
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the next region, marking that one yellow. This is highly useful for debugging.
If you are not sure what is going wrong with your code, try to separate your
code into regions by using the #\%\%. Then execute those regions one by one,
seeking to understand what is happening in each.

Another application of this kind of regional execution is when you have a
part of the code that takes a long time to run. As we discussed, in executing
code within a region, Spyder doesn’t forget what happened before — if you
loaded some modules before, they will still be loaded and accessible; if you
gave certain variables certain values, these variables will still be defined in the
same way. Thus, imagine that you have already executed the long-running code
once. If you then want to test whatever part of your programming comes below,
simply separate it from the long-running code by a separating line. That way,
executing just the part of the code you are working on now will be a matter of
e.g. seconds — whereas executing the whole of the code, including the long-
running bits, would take much longer.

5.3 Modules

Some functionality in Python comes out of the box, and is available whenever
you run Python. For less common functions, you will need to import specific
modules. Some modules that we will use in the following are:

1. Numpy — a collection of mathematical and numerical functions, from sin
and cos to integration and linear algebra. We will use this instead of the
python math module, which also has basic mathematical functions.'®

2. Scipy — a collection of functions for scientific calculations. We will use the
scipy functionality for curve fitting, for instance.'?

3. Astropy — functions for astronomers, including those that let us deal with
files in the fits format (as professional astronomical images usually are)
and those that help us with calculating astronomical quantities.?’

4. Matplotlib — our go-to library for plotting diagrams of various kinds.?!

With Anaconda, these modules are already installed. Other, more specialised
modules, you might need to install yourself. Usually, when you have found (via
Google for instance) a module, it will give you some instructions on how to

¥Travis E. Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006). Stéfan van
der Walt, S. Chris Colbert and Gaél Varoquaux. The NumPy Array: A Structure for
Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

19 Jones E, Oliphant T E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python,
2001—, [http://www.scipy.org/] [Online; accessed 2019-05-21].

20 Astropy Collaboration (2018): The Astropy Project: Building an inclusive, open-science
project and status of the v2.0 core package, [https://arxiv.org/abs/1801.02634]. Astropy Col-
laboration (2013): Astropy: A community Python package for astronomy, DOI:10.1051/0004-
6361/201322068

21John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &
Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55
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install the module. Installation also varies from operating system to operating
system — which is why I cannot give you a simple, general recipe here.

Once a module is installed on your computer, you can import it, or parts of
it, into the programs you write. It is customary to place all import statements
at the beginning of your script, so you have an overview of what has already
been imported and what hasn’t.

For instance, here is a script where I import the numpy module. Once it is
imported, I can use the module’s functions. The name of a module’s function
in this context starts with the module name, then a full stop, then the specific
function name. For instance, this script here will print the sine of 3.1416:

import numpy
print (numpy.sin(1.57079632679))

When executed, the program dutifully returns 1.0 as the result (since the
argument is equal to 7/2, up to a numerical rounding error that is too small to
influence the output).

I can also import the module under another name. Then, whenever I call a
function or constant from that module, I can use the new (usually abbreviated)
name. Like many other people, I habitually abbreviate numpy to “np” when I
import it:

import numpy as np
print(np.sin(1.57079632679))

If I only need a specific function from the module, I can import that function
directly. Here, I import the sine function “sin” from the numpy module. Once
I have done this, I do not need to prefix the function with the module name —
I can call the function directly:

from numpy import sin
print(sin(1.57079632679))

When you import a specific function, you can also give it another name:

from numpy import sin as superDuperSin
print (superDuperSin(1.57079632679))

Sometimes, you will not need the whole module, and instead import a sub-
module (that is, a predefined subset of the module’s functionality). In the
section where we deal with plotting diagrams, we will usually include a state-
ment

import matplotlib.pyplot as plt

for all our plotting and diagram needs.
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6 Basic operations with Python

6.1 Meet your new versatile calculator

The least coding can do for you is serve as a versatile calculator that, an added
bonus, documents what you have been calculating. Imagine that we want to
calculate the luminosity of a star with radius R = 695500 km and effective
temperature Teg = 5780 K. We use the Stefan-Boltzmann law for blackbody
radiation, which states that the luminosity L in that situation is given by

L = 47R* - 0T, (11)

with the Stefan-Boltzmann constant

o =5.670367 - 107° ——;.
m=K

The easiest way to do the calculation is to define the variables involved, and
the constant sigma, and then write down the formula for the result:

import numpy as np

Teff = 5780

R=695500%1000
sigma=5.670367e-8

# Now the formula:

L = 4x*np.pi*R**2*xsigmaxTeff**4
#...and we print the result:
print (L)

The program dutifully returns 3.68567074251e+26, which is indeed the lumi-
nosity of that particular star, the Sun, in Watt.

Some notes on the formula: The asterisk * is the standard sign for multipli-
cation. The double asterisk ** stands for a power, so Teff**4 represents Te4ff.
The geometric constant 7w we have imported from the numpy package; hence
the name np.pi.

Note that we had to take care to use the proper units: the radius R was
given in kilometers; in our script, we have multiplied that number by 1000 in
order to get the (SI) unit of meters.

There is an easier way of doing this, and that is provided by astropy, as we
shall see in the next section, 6.2.

The advantage of doing a calculation as a script, instead of typing it into
a pocket calculator, is that you automatically document what you have done.
You can go back, identify mistakes if necessary. And if you need to do the same
calculation, but for values other than those you have used in the first case, you
can just change the parameters and let the script run again. Or import a whole
list or array of data, and apply the calculations to thousands of objects, one
after the other, automatically.

6.2 Units and constants

Did you ever mix up your units? If not, good for you. But even then, keeping
track of your units would give you a handy cross-check for your result. If your
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result has the wrong units, something went wrong in the calculation.

The astropy module includes a handy selection of units and constants from
physics and astronomy, and defines a straightforward way of using those units
in calculations. You can find a list of all the pre-defined units on the page
[http://docs.astropy.org/en/stable /units/], and of all the pre-defined constants
on [http://docs.astropy.org/en/stable/constants/].

Here is an astropy version of the blackbody luminosity (11) calculation:

from astropy import constants as const
from astropy import units as u

Teff = 5780*u.K

R = const.R_sun

# Now the formula:

L = 4*np.pi*R**2*const.sigma_sb*Teff**x4
# print the result:

print (L)

The output this time carries a proper physical unit, namely

3.84713215453e+26 W

Let’s see what we did there. Tog this time was defined not as a pure number, but
multiplied with the appropriate unit, namely u.K for the unit K, Kelvin. The
solar radius R is accessible via the astropy constant module, as const.R_sun.
Similarly, the Stefan-Boltzmann constant is const.sigma_sb.

We can also force the program to convert the result to specific, different
units. For instance, the solar radius in km (instead of m) can be obtained by
writing

(const.R_sun) .to(u.km)

which returns

695 508 km

The conversion function to is appended to the result (in this case, enclosed in
parantheses); its argument is the target unit to which the expression is to be
converted, in this case u.km.

If the target unit is not equivalent to the proper physical unit of the ex-
pression, for instance if we try to “convert” a length to Kelvin, we get an error
message like “UnitConversionError: 'm’ (length) and 'K’ (temperature) are not
convertible”.

6.3 Random numbers

Sometimes, you will need random numbers — to pick a random sample from a
larger subset, for instance, or to randomly place particles at the beginning of a
simulation. The random module in Python provides functions for this. Once
imported with
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import random

you have a whole suite of random functions at your disposal. One is

random.random()

which returns a random floating point number z with 0 < x < 1. Scale this
up and add an offset to obtain a random floating point number from any other
required range of values. The function

random.randint (p,q)

returns a random integer ¢ with p < ¢ < ¢. Finally, to create a random subset
of k elements from a list thisList, call

random.sample(thisList,k)

as in the example

In: thisList = range(10)

In: random.sample(thisList,5)
Out: [5, 9, 7, 1, 3]

6.4 Strings

Strings are important whenever we are producing text output, or need to load
files following a certain naming convention. If you want to concatenate strings,
you can just use the plus sign:

In: ’ABC’ + ’def’
Out: ’ABCdef’

The most useful tool for building strings out of numbers and other variables
is the format function, which works as follows: You create a string that includes
a placeholder built from curly brackets. The string is followed by .format (),
where the parentheses enclose those variables that are to be substituted for the

placeholders. For example, to insert an integer value into a file name, you can
do this:

In: thisInt = 10
In: ’egon{}.jpg’.format(thisInt)
Out: ’egonl0.jpg’

Python sees the placeholders in the string, deduces “ah, I need to insert a
value here” and looks for the variable whose value is to be inserted among the
arguments of the format function.

There are several useful conventions. If we want to pad our integer with a
certain number of zeroes, do this:

T
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In: thisInt = 10
In: ’egon{:03d}.jpg’.format(thisInt)
Out: ’egon010. jpg’

This tells Python that the integer in question should always have 3 digits, and
if it is too short, python should add zeroes on the left. To display floating point
numbers, use {:f}:

In: thisFloat=1.51515151515151515
In: ’This is a floating point number: {:f} (see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515152 (see?)’

Note that the string only includes 6 decimal places, and that the final digit has
been rounded. If you want more decimal places, you can tell python like this:

In: thisFloat=1.51515151515151515
In: ’This is a floating point number: {:.9f} (see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515151515 (see?)’

For scientific formatting with an exponential, use {:e},

In: thisFloat=151515.1515
In: ’This is a floating point number: {:e} (see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515152e+05 (see?)’

Also, there is a placeholder that only switches to exponentials for numbers
smaller than 10~%:

In: thisFloat=0.0001515

In: ’This is a floating point number: \%g (see?)’ \J, thisFloat
Out: ’This is a floating point number: 0.0001515 (see?)’

In: thisFloat=0.00001515

In: ’This is a floating point number: \%g (see?)’ \J, thisFloat
Out: ’This is a floating point number: 1.515e-05 (see?)’

All these and many more options are listed in the Python documentation,
[https://docs.python.org/3.1/library /string. html#format-examples].

One additional thing to keep in mind, since it might come in handy: Strings
can be addressed as lists of characters, so lots of tricks we will talk about in
section 7 when we will have a closer look at lists are applicable to strings as
well.

For instance, if you only want to use the fourth through sixth character of
a string, you would do a slice using square brackets, as with any list, like this:

In: thisString=’ABCDEFGHIJKLMNOP’
In: thisString[3:6]
Qut: ’DEF’

As an astronomical example, we will automatically create a URL to down-
load a spectrum from SDSS data release 8. We define the data for the spectrum
we want to download: the reduction run, the plate used, the modified Julian
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date of the observation, the number of the fiber in that plate catching light from
our source. Then we combine those numbers into a custom URL for download:

run2d=26

plate = 1324

mjd = 53088

fiberID = 456

baseURL = "http://data.sdss3.org/sas/dr8/sdss/"
dirURL="spectro/redux/{:d}/spectra/{:d}/".format (run2d,plate)
fileURL="spec-{:d}-{:d}-{:04d}.fits".format(plate,mjd,fiberID)
url=baseURL+dirURL+fileURL

The resulting URL is
http://data.sdss3.org/sas/dr8/sdss/spectro/redux/26/spectra/1324/spec-1324-53088-0456.fits
Try and paste it into your browser, or click the link!

A simple way to actually do the download, at least on Mac or Linux com-
puters with curl installed, would be a system call

from subprocess import call
saveFileName= "spectrum.fits"

call(["curl", "-o", saveFileName, urll])

This downloads the file to the working directory, where it will be saved as
“spectrum.fits”.

6.5 Conditions

An important part of what makes coding so versatile are structures that allow
you to let your program make decisions, based on the available data. For
instance, you could write a script like this:

a=10
if a>1:
print("a is bigger than one!")

which, if you write it in window A and let it run, will return ”a is bigger than
one!” in window C. If, on the other hand, you set a=0 (or any other value that
is not bigger than one) and run the script, it will not print anything.

Note that the actions that should happen if he condition is fulfilled, in this
case the print statement, are indented (either by using tab or by putting four
blank spaces in front of it). In Python, such indentation is required. This is
how Python knows that these statement belong to the “if” block, and are only
to be executed if the given condition is true.

Some decisions involve an alternative: If the condition is true, do this, if it
is not true, do that other thing. This is what the if. .. else construction is for:

a=0
if a>1:

print("a is bigger than one!")
else:
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print("a is not bigger than one!")

Try it! There is an additional keyword called elif, which allows you to differen-
tiate further. Check, by changing the values of a, that this little script is indeed
telling people the truth about the variable:

a=0
if a>1:

print("a is bigger than one!")
elif a==1:

print("a is equal to one!")
else:

print("a is smaller than one!")

Note that for the ”a is equal to one” we have used not the equals-sign = but
a double equals sign ==. This is because a=1 would define a as being equal to
one. The equals-sign, after all, is used to assign values to variables.

6.6 User-defined functions

In many situations, functions will come in handy. If I need to perform the same
operation repeatedly on various variables, it makes sense to not repeat writing
down all the steps of the operation again, and again, and again. Instead, we
can define a function comprising these steps; whenever we need to perform the
operation, we apply that function.

For instance, assume that there is a specific polynomial function

f(z) =222 — =z, (12)

which occurs in our analysis again and again. We need to apply this function
first to a variable a, then to a variable b.

Writing down the polynomial explicitly each time we need it is rather cum-
bersome. Instead, we can define a function using def, and apply that function
twice:

def polyFunc(x):
return 2*x**x2-x

a=2
b=4
print (polyFunc(a))
print (polyFunc (b))

Write all this down in window A and run it. In window C, you will see the
results

6
28

— our polynomial function applied to a and to b, respectively. Let’s look a bit
closer at this.
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def polyFunc(x):
return 2¥x**2-x

is the definition of our function. The def keyword is followed by the name
we have chosen for the function, in this case polyFunc. After the name, in
parentheses, follows the list of arguments for the function. Our function will
have one argument, which we have given the internal name x. Then follows the
return statement, which contains what the function will report back when it is
called, in our case the result of what happens when you insert the argument
value into the polynomial (12).

The block of instructions that is called when defining a function can be
rather long and complex. Here is a comparatively simple example, which returns
the square root of a positive number, and zero if the argument is negative:

import numpy as np

def zeroSqrt(x):
if x<0:
return 0
else:
return np.sqrt(x)

print (zeroSqrt(-1))
print(zeroSqrt(4))

If you put this in window A and run it, the result in window C will be

0
2.0

as expected. Note the two levels of indentation here: The if and the else are
indented because they are part of the function definition. The two returns are
indented double, because they are subservient to the if and the else condition,
respectively.

Functions can have multiple arguments. This function here will return the
sum of its three arguments:

def sumOfThreeArgs(x,y,z):
return x+y+z

sumOfThreeArgs (1,20,300)

When executed, this little script will duly return 321. Functions can also return
more complex constructs, such as lists, tuples or arrays. They can return all
types of variables, or combinations thereof.

There is an alternative way of defining functions, which allows for more
compact scripts at least for simple functions. It uses the keyword lambda,
which echo’s mathematics’ formal system of lambda calculus, as follows:

polFunc = lambda x: 2*x**2-x
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‘print(polFunc(Q))

This is a one-line-definition for our function: the keyword lambda, then the
variable (or, separated by commas, variables) and to the right what would be
the statements following the return keyword. Run this, and it will dutifully
return the value 6.

One general remark: While you can make a function manipulate existing
variables, or make them define variables that are accessible by the rest of your
script afterwards, I would strongly (!) recommend that you separate your func-
tion cleanly from the rest of your script. Let the only information the function
receives from the outside be the function arguments. Let the only informa-
tion anything else receives from the function be the object after the return
statement.

6.7 Timing your code

Once we get into the realm of more complicated code, there are occasions when
execution time will start to matter. Programming something in one way, or
another, can make the difference between waiting a few minutes for your result,
or a few hours. Where the differences are that stark, you are likely to notice
them right away.

Should you want to quantify runtime more precisely, you can use Python’s
time module. The function time() will return the number of seconds that
have passed since an operating-system-specific zero point (in UNIX, January
1, 1970). By calling the function once before and once directly after a certain
point of your script, you can keep track of what takes how long, for instance:

import time

start_time=time.time()

for ii in range(1000000) :
pass

end_time=time.time()

print ("This took {} seconds!".format(end_time-start_time))

7 Taming long data sets: Lists in Python

7.1 A list of galaxies

Imagine that we have 9 galaxies. For each galaxy, we know its brightness. In
Python, the list of all these brightness values can be stored as an object known
as, ahem, a list. For instance you can define a list with the variable name
galaxy_u like this:

galaxy_u = [23.4, 23.2, 26.8, 24.6, 24.5, 24.3, 23.1, 27.0, 24.0]
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In some ways, this looks similar to the way you would write a list by hand,
separating the different items using a comma. In this case, too, the comma
tells the computer where the next item begins. The list as a whole is enclosed
in square brackets.

If you now enter galaxy_u in the IPython console and press return, you will
obtain the whole list:

In: galaxy_u
Out:

[23.4,

23.
26.
24.
24.
24.
23.
27.0,
24.0]

>

>

>

>

>

>

O WO o 00N

What if you want to retrieve a specific item? Even though this is not shown
explicitly, all the elements in this list are numbered, starting with zero. Element
0 has the value 23.4, element 1 has the value 23.2, element 2 the value 26.8 and
so on. To retrieve a single element, simply add the element’s number in square
brackets to the variable name. Like this, as entered in the IPython console:

In: galaxy_ul2]
OQut: 26.8

Ask for the element with index 2, and you get the element in the third place
of the list (since the first index is zero). Of course, you don’t need to put a
numerical value in there. It could be any integer variable i, and galaxy_ul[i]
would return to you the list element with the index value i.

You can also apply some basic functions to a list. For instance, max(galaxy_u)
stands for the largest element of the list, in our case

In: max(galaxy_u)
OQut: 27.0

In the same way, you can get the smallest element:

In: min(galaxy_u)
Out: 23.1

Another interesting property is the number of elements in the list. Use the len
function here:

In: len(galaxy_u)
Qut: 9

In this case, you can check the answer by hand: yes, this particular list has 9
entries.
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Last but not least, using a procedure called slicing, you can obtain parts of
the list. For instance, galaxy_u[2:5] will return everything from the element
with index 2 up to and including the element with index 4 =5 —1 as a smaller
list:

In: galaxy_ul[2:5]
Out: [26.8, 24.6, 24.5]

Leave out the index before the colon, and your sublist will start with the first
element:

In: galaxy_ul[:5]
Out: [23.4, 23.2, 26.8, 24.6, 24.5]

And, even more useful, if you leave out the index after the colon, the result will
automatically include all elements up to and including the last list element:

In: galaxy_ul5:]
Out: [24.3, 23.1, 27.0, 24.0]

You can als count off the final included element from the end, using a minus
sign. For instance, this here gives you everything from the element with index
5 up to end including the next-to-last element:

In: galaxy_ul[5:-1]
Out: [24.3, 23.1, 27.0]

Finally, let us talk about various ways of changing a list. Appending an
additional element to the end of the list is easy:

In: galaxy_u.append(25.1)
In: galaxy_u
Out: [23.4, 23.2, 26.8, 24.6, 24.5, 24.3, 23.1, 27.0, 24.0, 25.1]

We can also remove the last element from a list. This is what pop will do:
apply pop and the result will be the rightmost element of the list. But the list
itself will also have been modified: the last element will have been removed, as
we can see when we enter the list’s name directly after the popping has been
completed:

In: galaxy_u.pop()

OQut: 25.1

In: galaxy_u

Out: [23.4, 23.2, 26.8, 24.6, 24.5, 24.3, 23.1, 27.0, 24.0]

7.2 Doing something element by element

Oftentimes, you need to apply some function or operation to each list element
separately. For instance, in the case of galaxies from the SDSS catalogue (Sloan
Digital Sky Survey), the u-filter magnitude m,, is related to the flux f,, (energy
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received from the galaxy per unit frequency interval per unit time per unit
receiving area) as
fu = 3631 - 10me/(=2) Jy, (13)

I am skipping over some complications to keep things simple, and it doesn’t
matter if you have not encountered the unit “Jansky,” abbreviated Jy, before.??
What matters is that every value in our list corresponds to a u magnitude m,,,
so for every value we want to use formula (13) to calculate the corresponding
flux.

How would we do this in real life? Step by step. We would take the first
list entry, perform the calculation described in (13), and note down the result.
Then we would do the same with the second list entry, then the third entry,
and so on. In the end, we would have noted down a list of results. The ith
result would be the flux for the ith magnitude.

If u is some particular magnitude, then from what we have learned in section
6.1, using the numpy package to define our mathematical functions, we know
that the corresponding flux £ is given by the formula

f = 3631*np.power(10,u/(-2.5))

There are several ways of performing this operation with all the elements
of a list. The most straightforward one is close to how we would describe what
we want to do in words: For each element u in the list galaxy_u, we want to
calculate f= 3631*np.power (10,u/(-2.5)) and then put the result in some
new list, let’s call it galaxy_£f. This is the actual code:

import numpy as np

galaxy_f=[]

for u in galaxy_u:
£=3631*np.power (10,u/(-2.5))
galaxy_f.append(f)

The first row defines an empty list galaxy_f, which has no elements and thus is
no more than square brackets enclosing nothing whatsoever. Then, we tell the
code to perform the following (indented) operation for each element u. The code
will repeat what is in the indented block as many times as there are elements
in our list, each time on a different element.

Each time we have calculated the flux £ for a particular element, we append
the result to the end of our list galaxy_f. When the code has successfully
performed the operation on each element of galaxy_u, our resulting flux list
galaxy_f is complete, and we can have a look at it:

In: galaxy_f

Out:
[1.5849889868640447e-06,
1.9055758881669273e-06,
6.9187278669245402e-08,

22If you want to read up on the gory details, go to the SDSS web pages, in particular to their
magnitude and flux explanations on [http://www.sdss.org/dr13/algorithms/magnitudes/] and
[http://www.sdss.org/dr12/algorithms/fluxcal/].
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.2483918075784649e-07,
.7547471818262932e-07,
.9187278669245405e-07,
.0894224124712161e-06,
.7547471818262931e-08,
.1206596328112918e-07]

©O© OO N O OO

Looking good! There is another way of solving our problem which can come in
helpful, namely using the map function. For this, we define the operation we
are interested in as a function (cf. section 6.6). map will apply this function to
each separate element of the list, collecting the results in a new list:

def flux(mag):
return 3631*np.power (10,mag/(-2.5))
galaxy_f = map(flux, galaxy_u)

And there is yet another way of performing this particular task, namely creating
a list from another list. The construct in question is called a list comprehension.
Recall the elegant way mathematicians can define sets like E, the set of all even
integers, like this:

E={2n|VYneZ}

In words, we obtain the set of all even numbers by taking the double of all
elements in the set of Z of integers. We've neatly defined an infinite set using
just a few symbols and a clever convention. List comprehensions in python
work just like that (although they cannot, of course, produce infinite sets). In
list comprehension form, the definition of our list of fluxes is one line:

galaxy_f = [ 3631*np.power(10,u/(-2.5)) for u in galaxy_u ]

The expression written within the square brackets is evaluated for every u in
the list galaxy_u. If you only want results satisfying a certain condition, you
can add an if block at the end. For instance, if we only want to include galaxies
for which u < 25, we could write

galaxy_fb = [ 3631*np.power(10,u/(-2.5)) for u in galaxy_u if u < 25]

which results in

In: galaxy_fb

Out:
[1.5849889868640447e-06,
.9055758881669273e-06,
.2483918075784649e-07,
.7547471818262932e-07,
.9187278669245405e-07,
.0894224124712161e-06,
.1206596328112918e-07]

O© N O OO
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7.3 Operations involving more than one list

More often than not, when we calculate something, it involves more than one
property of an object. Consider a list st_appV of apparent magnitudes in the
V band of several stars, and a list st_distPc containing each star’s distance
from us in parsec:*?

st_appV = [-1.46, 5.2, 3.49, 0.76]
st_distPc = [2.64, 3.5, 3.65, 5.12]

We want to calculate each star’s absolute magnitude, using the formula
relating the apparent magnitude m, absolute magnitude M, and distance d as

d
M =m —5-logy (10 pc> . (14)

This time, we need to insert not one, but two properties of the star on the right-
hand side: its apparent magnitude and its distance. We need to go through
two lists at the same time. How do we do that?

The inelegant way would be to just go through the elements by calling them
directly, using their indices. After all, the apparent magnitude st_appV[0] and
the distance st_distPc[0] belong to the same star (in this case, to Sirius); anal-
ogously, the apparent magnitude st_appV[1] and the distance st_distPc[1]
belong to the same star (in this case, to 61 Cygni A). Thus, we can make a for
loop of indices like this:

import numpy as np

st_absV=[]

for i in [0,1,2,3]:
thisM = st_appV[i] - 5*np.loglO(st_distPc[i]/10.0)
st_absV.append (thisM)

Again, we begin by creating an empty list st_absV. Then, we let i take on all
of the index values of the lists st_appV and st_distPc, one after the other. For
each index value, we fetch the appropriate items from each list and combine
them as required by the formula (14).

There is one thing that is particularly awkward about this solution, and
that is writing out the index values [0,1,2,3] by hand. Once we get to longer
lists, this will no longer work; also, what about cases where we do not know,
beforehand, how long the lists we are processing will be?

The solution is the function range. With a single integer argument n, it
produces a list with n values, containing integer values from 0 to n — 1, for
instance:

In: range(5)
Out: [0, 1, 2, 3, 4]

With two arguments, you can make the list begin with a value other than zero:

231 took these values from [https://en.wikipedia.org/wiki/List_of nearest_bright stars] —
they are for Sirius, 61 Cygni A, 7 Ceti, and Altair, respectively.

97



https://en.wikipedia.org/wiki/List_of_nearest_bright_stars

In: range(2,5)
Out: [2, 3, 4]

Combined with the length function, which gives you the number of elements in a
list, we can use range to make sure our for-loop runs over all the elements in the
list st_absV, which is of course the same number of elements as in st_distPc.
The result is

import numpy as np

st_absV=[]

for i in range(len(st_appV)):
thisM = st_appV[i] - 5*np.loglO(st_distPc[i]/10.0)
st_absV.append (thisM)

Using list comprehensions, we can again make this operation much shorter and
simpler. In list comprehension form, we only need to write

import numpy as np
st_absV = [ m - 5*np.logl0(d/10.0) for m,d in zip(st_appV,st_distPc) ]

The difference is now there are two variables, m and d, in the for loop. The secret
is in the zip. Think about closing an ordinary zipper, e.g. about zipping your
bag. Where before, there were two separate rows of teeth, zipping combines
these rows, so in the closed zipper, there is one tooth from the left side, then one
from the right side, and so on. The zip function is somewhat similar. Where,
initially, we have two lists, st_appV and st_distPc, zip combines these into a
single list where each entry has two values. Assume that the initial lists are

1st_appV = [-1.46,5.2,3.49,0.76]

and

1st_distPc = [2.64,3.5,3.65,5.12].

You should think about these lists as listing different properties of the same
astronomical objects. The first list contains the visual brightness V of each
object. The second list contains each object’s distance from us, in parsec. So,
for instance, the first object in question has visual brightness -1.46 and is at
a distance of 2.64 parsec from us. If we now apply the zip command, the two
lists are combined as follows:

In: zip(st_appV,st_distPc)
Out: [(-1.46, 2.64), (5.2, 3.5), (3.49, 3.65), (0.76, 5.12)]

Again we have a list with one entry for each object. But now that entry is
itself a list-like entity: For the first object, that list-like entity contains first
that object’s visual brightness -1.46, and in second place the object’s distance
in parsec, 2.64.

In Python, the objects that look like little lists, but have round instead of
square brackets, are called tuples. Lists are mutable — as we have seen, once a
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list is created, you can remove items, or append items, changing the number of
items in the list. Tuples, once defined, need to stay the same length. Python
allows for assignments like this, mixing tuples (or lists, for that matter) and
ordinary variables:

m, d = (-1.46, 2.64)

Here, m and d are ordinary variables, each capable of storing a single values,
while on the right-hand side, there is a tuple. Two ordinary variables on the
left, a tuple with two values on the right — that makes for an unambiguous
assignment. After this assignment, the variable m holds the value —1.46 while
the variable d holds the value 2.64.

With this background information, the list comprehension version of our
calculation is straightforward to understand: With zip, we transformed our
two lists, one with all the apparent magnitudes, the other with all the distances,
into a single list of tuples. Each of the tuple entries consists of two items: first,
the apparent magnitude of a single star, and in second place the distance of
that same star. The for loop iterates over all these tuples, one for each star,
and for each star we assign to m that star’s apparent magnitude, to d that star’s
distance. Then we use both m and d in the formula for calculating the absolute
magnitude.

While our example has used two lists, the zip works with any number of
lists. For fun, we can try combining the list for the apparent magnitude, the list
of distances, and the list of absolute magnitudes that we have just produced:

In: zip(st_appV,st_absV,st_distPc)

Out: [(-1.46, 1.431980365650845, 2.64),
(5.2, 7.4796597782486227, 3.5),
(3.49, 5.6785356777176261, 3.65),
(0.76, 2.213650195120846, 5.12)]

Again we have produced some kind of master list, with one entry per star,
but this time each entry is a tuple with three items: first, the star’s apparent
magnitude, second, its absolute magnitude, and third, its distance in parsec.
We can use zip to, well, zip together any number of lists — as long as all these
lists each have the same length.

7.4 Creating lists simultaneously

In the previous section, we have used tuples, and zip, to create a list that
depended on two, three, or any other lists. We can use those same tools to
create several lists simultaneously. The simplest application is that we have
several lists referring to the same objects — the first entry in each list refers to
one specific object, the second entry in each list to the second object, and so
on — and that we want to filter these lists according to some criterion. As an
example, consider these three lists that contain catalogue numbers, distances
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(in parsec) and redshifts z for several galaxies:**

nm = [’SDSS-II SN 21387’,°SDSS-II SN 13651°,°SDSS-II SN
03706’ ,°SDSS-II SN 10963°,°SDSS-II SN 03475°]

dpc=[4200.,1700.,3720.,577.,1040.]

zv=[0.48,0.25,0.44,0.09,0.3]

On this basis, our goal is to create three new lists, call them nmN and dpcN
and zvN, which contain only those of the galaxies with a redshift greater than
z = 0.26.

Let us try a workable but somewhat wordy code first: iterating over the
(common) index values for these lists, filtering accordingly, and filling up our
new lists by appending each suitable value. This can be achieved by

nmN=[]

dpcN=[]

zvN=[]

for i in range(len(anm)):

if zv[i] > 0.26:

nmN . append (nm[1])
dpcN.append (dpc[il)
zvN.append(zv[il)

In the end, we have three new lists, containing the values for those three of the
five galaxies that meet our criterion:

In: nmN

Qut: [’SDSS-II SN 21387’, ’SDSS-II SN 03706’, ’SDSS-II SN 03475’]
In: dpcN

Qut: [4200.0, 3720.0, 1040.0]

In: zvN

Out: [0.48, 0.44, 0.3]

But once more, there is a more elegant solution using a list comprehension:

nmN,dpcN,zvN = zip(*x[ (n,d,z) for n,d,z in zip(um,dpc,zv) if z> 0.26 ])

The expression zip(nm,dpc,zv) again zips the three lists into a single list where
each item is a tuple containing that galaxy’s name, distance and redshift. For
instance, the first tuple in that list is (*SDSS-II SN 21387’, 4200.0, 0.48)
combining the three properties of the first galaxy. For each iteration — where
we look up n,d,z for one particular galaxy — we do not calculate a single
result, but instead tell Python to add a tuple n,d,z to the list of results. The
last part with the condition makes sure that this only happens if our condition
is met, that is, if z > 0.26. The combination zip(* \dots ) is something like
an inverse to zip. Before we apply this function, we are still dealing with a
single list, containing one tuple per galaxy:

In: [ (n,d,z) for n,d,z in zip(am,dpc,zv) if z> 0.26 ] ‘

24 The galaxies are taken from NASA’s extragalactic data base (NED), specifically its list of
redshift-independent distances for galaxies, https://ned.ipac.caltech.edu/Library/Distances/
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OQut: [(’SDSS-II SN 21387’, 4200.0, 0.48),
(’SDSS-II SN 03706’, 3720.0, 0.44),
(’SDSS-II SN 03475’, 1040.0, 0.3)]

The zip function combined with the star operation unzips this object and re-
turns three tuples, the first of which contains all the galaxy names, the second
all the galaxy distances, and the third all the galaxy redshifts:

In: zip(*[ (n,d,z) for n,d,z in zip(am,dpc,zv) if z> 0.26 1)

OQut: [(’SDSS-II SN 21387’, ’SDSS-II SN 03706°, ’SDSS-II SN 03475°),
(4200.0, 3720.0, 1040.0),
(0.48, 0.44, 0.3)]

If we assign three variables to this object, separated by comma, then Python
automatically assigns the first tuple to the first variable, the second tuple to
the second and so on:

nmN,dpcN,zvN = zip(x[ (n,d,z) for n,d,z in zip(um,dpc,zv) if z> 0.26 ])

If we now call up the variables on the left-hand side, we can see that each now
contains one of the tuples. For instance, nmN now contains the three names of
those galaxies that fulfil our condition z > 0.26:

In: nmN
OQut: (’SDSS-II SN 21387’, ’SDSS-II SN 03706°, ’SDSS-II SN 03475°)

Is it important that we now have tuples where before we had lists? For many
purposes, tuples will be fine, and we can just use the resulting tuples. If we want
to convert these tuples back to lists, the map function (which we encountered
in section 7.2, p. 96) can help. We use it to apply the function list, which
converts a tuple into a list, to each separate tuple:

nmN,dpcN,zvN = map(list, zip(x*[ (n,d,z) for n,d,z in zip(am,dpc,zv) if
z> 0.26 1))

Now, each of the resulting variables is indeed a list, for instance

In: nmN
Qut: [’SDSS-II SN 21387’, ’SDSS-II SN 03706, ’SDSS-II SN 03475°]

7.5 Numpy arrays

Central to the numpy module is a versatile structure called an array, which is
similar to a list but has several nice extra properties. For instance, if we want to
create a new array out of several old ones, we can write the formula in question
in exactly the same way we would write it for a simple, non-list variable. In
order to define a numpy array from scratch, we define a list and transform that
list into an array as follows:

import numpy as np
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a = np.array([1.0,2.0,3.0,4.0])

If we want an array in which each value is twice than it was for our original
array, simply write

b=2*a

and the array b will now contain the values 2,4,6 and 8. All arithmetic with
numpy arrays is element-wise: Apply functions, exponentiate, add, subtract,
multiply — all this will be done as if you were to apply these operations to each
element in the array, and corresponding elements in whatever additional arrays
are involved. For instance, with the definitions above,

In: b+1l.5*a
Qut: array([ 3.5, 7. , 10.5, 14. 1)

In order to calculate the first element of the array of results, python will take
the first element of b and add 1.5 times the first element of a. This is repeated
for the second elements, and so on until the operation has been performed with
all elements of the arrays involved.

7.6 Variable types, lists, arrays and speed

We have not looked at different types of variables much, so far. We didn’t have
to — Python as a programming language is “dynamically typed,” assigning a
specific type to a variable at the moment we assign a value to that variable,
with no need to declare the type beforehand. If we assign an integer to the
variable a, then that variable will be an integer variable. If we assign a string
to a, then from that moment on, a will be a string variable (until we possibly
change its type again).

In: a =’ am a string’
In: type(a)

Qut: str

In: a=1

In: type(a)

Qut: int

This flexibility comes at a price, and this is particularly relevant for list oper-
ations. A list, too, can be a collection of objects of different types — one and
the same list can contain an integer, a string, a floating point number, another
string and so forth. Python needs to carry along the information about what is
what, and about which operations can be applied to which list element. This
comes at a price; list operations in Python are more slow than comparable
operations in a language where you need to declare variable types explicitly.
A simple one-dimensional numpy array, on the other hand, can only contain
variables of the same type. (If you try to fill it with, say, a floating point number
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and an integer, it will choose the array type to accommodate all these values
at the same time — in this case, it would become an array of floating point
numbers.) You can also force an array to have a specific type, by using the
dtype keyword. e.g. in

floatArray = np.array([1, 2, 3, 4], dtype=’float32’)

That uniformity is one reason why numpy array operations are typically
much faster than list operations. The following program takes a list or array
consisting of the first million integers and doubles each element:

import time
import numpy as np
numberlist=[ii for ii in range(1000000)]
numberarrIt = np.array(numberlist)
numberarr = np.array(numberlist)
start_time=time.time()
for ii in range(len(numberlist)):
numberlist[ii] = 2*numberlist[ii]
end_time=time.time ()
print("List took {:.4g} seconds!".format(end_time-start_time))
start_time=time.time()
numberarr = 2*numberarr
end_time=time.time ()
print ("Array took {:.4g} seconds!".format(end_time-start_time))

On running this code, I find that the list operation takes 0.15 seconds, the
array operation a mere 0.0012 seconds — a factor hundred less! (The ex-
act values can vary from machine to machine, and from run to run.) If you
are analysing (or simulating) a lot of data, that factor hundred (or whatever
it turns out to be in that particular context) can make a substantial differ-
ence. Additional information about data types in Python can be found in
[https://jakevdp.github.io/PythonDataScienceHandbook/02.01-understanding-
data-types.html].

7.7 Strings and base n numbers as lists

Variables of different types can be transformed into each other. As a non-
trivial example, we consider object IDs for the SDSS survey. These are long
numbers to begin with; every object that has been identified in a data re-
lease of the SDSS has a unique object ID, and every object for which a spec-
trum has been taken has a spectral object ID, specObjID. Consider the ob-
ject with the spectral object id 1490816872793270272, which is an elliptical
galaxy. For a quick look, use the SDSS DRS (data release 8) object explorer
at [http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp]. Go to Search by
SpecODbjld in the menu on the left to call up our object and see an image,
spectrum and helpful information.

The DRS glossary, entry “specObjID”, states that the specObjld is a 64
bit number, and that the various bits contain information, namely from left to
right, starting with index zero:
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Bits ‘Name ‘Meaning

0-13 | plate number of spectroscopic plate

14-25 | fiberID | number of the glas fiber positioned over the object

2639 | MJD modified Julian date minus 50000 when observation was made

40-53 | rerun2d | reduction run number

54-63 only zeros — no meaning

How can we extract the information contained in that long number? We begin
by putting the specObjID into a suitable variable, and transform that to a
binary number, using the function bin:

specObjID = 1490816872793270272
binVersion=bin(specObjId)

If you look at binVersion directly, you can see it is actually a string:

In: binVersion
Out: ’°0b1010010110000011100100000110000010000000000000110100000000000°

The ‘Ob’ in the beginning indicates that what follows is a binary number. Let’s
get rid of it by treating the string like a list of characters and slicing:

In: bin(specObjId) [2:]
Qut: ’1010010110000011100100000110000010000000000000110100000000000”

If you count, e.g. using the len() function, you will see those are only 61 bits.
The conversion leaves out any leading zeros. To restore them, we can use the
zfill function:

In: bin(specObjId) [2:].z£i11(64)
Qut: ’0001010010110000011100100000110000010000000000000110100000000000°

This adds leading zeros so that, altogether, we have 64 bits. The plate number
is encoded in the first 16 bits. Just as with a list, we can take the appropriate
slice:

In: binVersion = bin(specObjId) [2:].2zfil11(64)

In: binVersion[0:16]
Qut: ’0001010010110000°

Now, if we use the int function, specifying base 2 as an extra argument, we can
convert this into an ordinary integer:

In: int(binVersion[0:16],2)
Out: 5296

That is indeed the object’s plate number, written as an integer, as you can
confirm by looking at the object explorer. Fiber number, Julian date and
the additional information contained in the object id can be extracted in an
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analogous fashion.

8 Basic plotting with Python and Matplotlib

Plots and diagrams are helpful tools for making sense of a given data set. We
have already seen some examples in section 2.7, and seen how to make use of
TOPCAT for the purpose in sections 4.7. Now, it’s time to learn how to do the
same in Python. For this, and all our subsequent plotting needs, we use the
sub-module matplotlib.pyplot. The basic setup is very simple, as follows.
We import the submodule like this:

import matplotlib.pyplot as plt

8.1 Plotting a function

In order to plot something, we need lists of x and y values. In this piece of script,
we use np.linspace to create a set of 200 points, evenly distributed between (and
including) the points 0 and 27:

import numpy as np
x = np.linspace(0,2*np.pi,200)

Recall that the nice thing about numpy arrays is that you can write down
element-wise operations just using the array variables themselves. Thus,

y = np.sin(x)

calculates the sine function for each element of x and stores all the resulting
values in the array y. The most simple plot, involving two lists or arrays, works
like this:

plt.clfQ
plt.plot(x,y)

Strictly speaking, the plt.clf () is not necessary here. It clears all figures or
figure elements you might have plotted, or specified, beforehand. I usually start
my figures that way, just to be on the safe side. The plot function gets two
arguments in this case: a list with x values and one with y values. Both lists
need to have the same length. The result is the plot shown in Fig. 81.

8.2 Making a plot look better

There are many ways that a plot like the last one can be made to look better.
For instance, we can introduce axis names, like this:

plt.clf O

plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.plot(x,y)
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Figure 81: Plotting a sine function with matplotlib

Also, the coordinate region that is shown goes towards slightly bigger x values
than necessary — on the right-hand side, the curve is hanging in the air. In
the y direction, on the other hand, we could use a bit more space, since the
curve is touching the axis box, and that makes the regions near the maxima
and minima less easy to see. We solve both problems by explicitly setting the
xlim and ylim ranges, stating both the lowest and the highest value:

plt.clfO

plt.xlabel(°Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.x1im(0,2*np.pi)

plt.ylim(-1.1,1.1)

plt.plot(x,y)

The resulting curve, with custom range and axis names, can be seen in Fig. 82.
That’s better.

Pendulum angle [arbitrary units]

Time in seconds

Figure 82: Sine curve with custom range and proper axis names

We can make a bewildering number of additional changes. (Of course, it is a
sign of plotting maturity when those options are used sparingly, and only when
they are in the service of helping the figure’s readibility.) Here is an example
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where we have changed the line color, line width, and line style for our curve:

plt.
.xlabel(’Time in seconds’)

.ylabel (’Pendulum angle [arbitrary units]’)
.x1im(0,2*np.pi)

.ylim(-1.1,1.1)

plt
plt
plt
plt

plt.

clf ()

plot(x,y,’r’,1lw=3.0,linestyle="dashed’)

The result can be seen in Fig. 83. The changes we have made here: specified

10f .

os5p ¢ N

.
0.0F 1

-osf . R

Pendulum angle [arbitrary units]
L4

-1.0f

Time in seconds

Figure 83: Sine curve with different color, line width, and line style

the colour ’r’, which is red; used the “lw” for line width option to set the
line width, and set the linestyle to 'dashed’ (instead of, say, ’dotted’). Colour
conventions can be found on [https://matplotlib.org/users/colors.html] — in
most situations, it suffices to know that blue, green, red, yellow, cyan, magenta
and white can be called up using their initial letters, while black is 'k’.

8.3 Annotating plots

Sometimes, we want to add straight lines to our plot, to show where certain x or
y values are located. This can be done using the axvline and axhline commands,
to add a vertical and horizontal line, respectively. As default argument, the
vertical line takes a single x value, and the horizontal line a single y value.
Here, we have given the lines two different colors, as well:

plt.clf ()

plt.xlabel(°Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.axhline(0.0,color="g’)
plt.axvline(0.5*np.pi,color= ’m’)
plt.x1im(0,2*np.pi)

plt.ylim(-1.1,1.1)

plt.plot(x,y)

The result is shown in Fig. 84. Note that, unlike for the function plot, where
we could add the line color information by just specifying the color, for axhline
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Figure 84: Sine curve with horizontal and vertical lines added

and axvline we need to state explicitly color=’"g’ and similar. We can also
add annotations to a plot: an arrow pointing to some particular feature. The
command for this is “annotate”, and it works as follows:

plt.clf O

plt.xlabel(’Time in seconds’)

plt.ylabel (’Pendulum angle [arbitrary units]’)

plt.axhline(0.0,color="g’)

plt.axvline(0.5*np.pi,color= ’m’)

plt.annotate(’intersection!’, xy=(np.pi, 0), xytext=(4,
0.3),fontsize=12)

plt.x1im(0,2*np.pi)

plt.ylim(-1.1,1.1)

plt.plot(x,y)

The result is shown in Fig. 85. The command annotate has added an annota-

1.0} B

05} R
intersection!

0.0

—-0.5F B

Pendulum angle [arbitrary units]

-1.0f+ B

L L L L L L
0 1 2 3 4 5 6
Time in seconds

Figure 85: Sine curve, with vertical and horizontal lines, and annotated

tion. The string argument is the text to be displayed. The xy tuple specifies the
coordinate point for where the arrow points, the xytuple where the annotation
text should be displayed. The fontsize option gives the size of the font used,
in points; you can add this option to pretty much any function which displays
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text. The arrowprops option specifies the type of arrow to be used. If you
leave out the arrow, you can use annotate just to place text somewhere in your
diagram, without the arrow.

8.4 Figure size

You can change the size of your whole figure by setting the figsize property,
like this:

plt.clf O

plt.figure(figsize=(4,2))
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [a.u.]’)
plt.x1im(0,2*np.pi)
plt.ylim(-1.1,1.1)

plt.plot(x,y)

Both width and height are given in inches and are assigned to the figsize option.
In this case, the figure would be twice as wide as it is high. Fig. 86 shows the
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Figure 86: Figure with figsize=(6,2)

same principle for figsize=(6,2). Note that font sizes do not scale with figure
size. If you make your figsize larger, text labels and axis labels will be smaller
relative to the overall size of the figure.

8.5 Scatter plots

Next, let us take 5 galaxies, values for their distance to Earth in Mpc and their
redshift values. (I will use the same which already made their appearance values
earlier in section 7.4.)

nm = [’SDSS-II SN 21387’,°SDSS-II SN 13651°,°SDSS-II SN
03706 ,°SDSS-II SN 10963°,°SDSS-II SN 03475°]

dpc=[4200.,1700.,3720.,577.,1040.]

zv=[0.48,0.25,0.44,0.09,0.3]

Let us create a Hubble diagram, in our case plotting redshift values on the x
axis and distance values on the y axis. Since these are separate data points, it
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does not make sense to join them with a line. Instead, we will plot the data
points as separate markers, using the scatter function:

plt.clf()
plt.scatter(zv,dpc)

The result can be seen in Fig. 87. Again there are several possibilities to
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Figure 87: Simple Hubble plot

make this look nicer and more readable. For instance, you can use the option
s to change the size of your markers, or color to change their color, and
marker to change the shape of the marker (all possible shapes can be found in
[https://matplotlib.org/api/markers_api.html]). Fig. 88 is a scatter plot with
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Figure 88: Simple Hubble plot with custom red triangle data points

red triangle markers with an area (size) of 40 square points, coded as

plt.clf Q)
plt.scatter(zv,dpc,marker=’"’,6s=40,color="r’)

Last but not least, it is also possible to plot a scatter diagram using the plot
function. Instead of the colour, you specify a data marker shape, in this case
circles:
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plt.clf()
plt.plot(zv,dpc,’0’)

8.6 Fitting data

The Hubble relation is supposed to be linear — for distant galaxies, redshifts
z and distances d are supposed to be related by the linear relation

z=Hy/c-d, (15)

with Hy the Hubble constant and ¢ the vacuum speed of light. Our galaxy dots,
each representing a galaxy’s redshift and distance, do not quite fall on a single
line. So what is the line that fits these data point best?

To find out, we import the function curve_fit from the module scipy.optimize.
The function gets three main arguments: our fit function that includes a func-
tion argument x and some parameters a, b, ... to be fitted, an array of x values
and an array of corresponding y values. The function returns a tuple of param-
eter values and of the corresponding errors.

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

from scipy.optimize import curve_fit

def fitFunc(x,a,b):
return x*atb

popt, pcov = curve_fit(fitFunc, zv, dpc)
perr = np.sqrt(np.diag(pcov))

The additional line, defining perr, gives standard deviations for each of the
parameters, as a measure of the uncertainty of the fit. In our case, the best
values for the parameters are a = 9569 + 2321 and b = —735.5 = 793.7; in the
notation of the script:

In: popt
Out: array([ 9560.54359198, -735.48959097])

In: perr
Out: array([ 2321.30936255, 793.7384594 1)

This corresponds to a value for the Hubble constant of

Mpc
km/s

Ho = (31.4+17.6)

which is a less than half the currently accepted value. We can plot the corre-
sponding straight line in our diagram, cf. Fig. 89. Note that we could have used
our physics knowledge about the Hubble relation being linear with no offset to
instead merely fit the function y = az, as follows:
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Figure 89: Hubble diagram, with the best-fit line shown

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

from scipy.optimize import curve_fit

def fitFunc(x,a):
return x*a

popt, pcov = curve_fit(fitFunc, zv, dpc)
perr = np.sqrt(np.diag(pcov))

In that case, the result is a = 7597.89598735 4+ 932.90257718, corresponding to

M
Hy = (39.5 + 4.8)%,
m/s

which is marginally better, but nothing to write home about.

8.7 Histograms

Finally, let’s make a histogram. Let’s couple that with an illustration of one of
the most important statistical theorems: the central limit theorem. Let us
use numpy’s random function to create an array of random numbers:

import numpy as np
randArray = np.random.rand(10000)

The simplest way of turning this into a histogram is matplotlib’s hist function,

plt.clfQO
plt.hist(randArray,bins=30)

whose result can be seen in Fig. 90. The argument “bins=40" indicates that
we want the histogram to have 40 bins. The default bin number is 10. The
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Figure 90: Histogram for our array of random numbers

histogram has no clear structure; as we would expect, all values are of similar
frequency, but with random fluctuations.

Next, let us define our random array a bit differently. This time, we add
two random arrays, so that each number in the resulting array is now the sum
of two random numbers.

import numpy as np
randArray = np.random.rand(10000)+np.random.rand(10000)

The resulting histogram can be seen in Fig. 91. Now, the histogram has a

04
0.00 025 050 0.75 1.00 1.25 150 175 2.00

Figure 91: Histogram for our array of sums of two random numbers

maximum in the middle, near 1, and smaller and larger values are less common.
This is straightforward to understand if you look at, say, the sums of the integers
between 1 and 5. There is only one way to obtain the 10, namely 5+5. But
there are several ways to obtain 5: 4+1, 3+2, 243, 1+4. An outcome near the
middle of the set is more likely.

We can repeat the exercise by regarding sums over more and more random
numbers. Fig. 92 shows the histogram for a random array where each element
is the sum of twenty random numbers. Does the shape look familar? This is
looking more and more similar to a normal (Gaussian) distribution, and that is
no accident. In fact, that is what the central limit theorem says for a situation
like this, where each of the quantities we document is the sum of many random
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Figure 92: Histogram for our array of sums of twenty random numbers

variables, all drawn from the same probability distribution (which must have
some additional properties such as finite variance): as the number of terms
in the sum grows, the resulting distribution comes ever closer to a normal
distribution. This is why normal distributions are so useful: In physics (and
astronomy), there are typically many small fluctuations and source of error,
which add up to influence the sought-for result. Similar to what happens in
the central limit theorem, the distribution for measurement results is likely to
come close to a normal distribution.

In closing, we do a histogram of a simulated normal distribution directly.
To this end, we use another function from the random sub-module of Numpy.
This one draws samples from a Gaussian distribution with mean 0 and standard
deviation 1:

import numpy as np
gaussDraw =np.random.randn(100000)

We can plot this, choosing a number of bins.

plt.clfO
plt.hist(gaussDraw,bins=40)

The resulting histogram is shown in Fig. 93. You can find an example for
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Figure 93: Histogram of 100000 values randomly drawn from a normal distribution
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a two-dimensional histogram, where column height is expressed by colour, in
section 9.3.
8.8 Saving figures

After you have drawn a figure with matplotlib, you can save it by adding the
line

plt.savefig(’thisIsAFilename.pdf’,bbox_inches=’tight’)

to your code. The string >thisIsAFilename.pdf’ may, of course, be replaced
by any other string, or string-valued variable.

The file type is determined by the file extension. In this case, a pdf file is
created. Other types, such as png or jpg, are possible. Resolution for pixel-
based formats can be set using the option dpi=300 for 300 dots per inch, or
similar. The bbox_inches=’tight’ makes sure the figure fits itself nicely into
the allotted space.

9 Importing table data into Python

In all previous examples, we have used data that was written directly into the
script. In most realistic cases, the data will instead be contained in a file of some
type. Thus, opening files and reading in data is an important scripting skill.
As we have seen (and explored with TOPCAT!) higher-level astronomical data
often comes in the form of tables, where each row represents a specific object,
and each column a type of property. For this kind of data, Python provides
a table format, which is basically an array with additional meta-information
thrown in.

9.1 Opening a FITS table in python

Let us begin with FITS tables. We have already encountered the FITS format
as a means to encode not only images, but tables, in section 4.1. Let us use
open the same Galaxy Zoo FITS file table zoo2MainSpecz.fits we downloaded
back then, and open it in Python:

from astropy.io import fits
hdulist = fits.open(’zoo2MainSpecz.fits’)

As we have seen before, FITS files in general can have a rather complex struc-
ture. They can consist of multiple “header/data units”, HDUs in short, where
the data can be an image or a table or another type of array, and the correspond-
ing header contains meta-information about the data. The hdulist variable
now contains all the HDUs of this particular FITS file. Call its associated
function, “index”, and you will get a brief table of contents:

hdulist.info ()
Filename: zoo2MainSpecz.fits
No. Name Type Cards Dimensions Format
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0 PRIMARY PrimaryHDU 16 (19741,) uint8

1 Joined BinTableHDU 480 243500R x 233C [K, K, K, E, E, 114,
11A, 20A, 20A, I, I, I, E, E, E, E, I, I, E, E, E, E, I, I, E, E,
E,E I, I,E E E E I, I,E E E,E, I, I, E, E, E,E, I,TI,
E, E,E,E, I, I, E E EEI,I,E, E E E I,I,E,ZE,ZE,ZE,
I, I,E,E,E,E, I, I, E, E,E,E, I, I, E,E,E,E, I, I, E,ZE,
E,E, I, I, E EE E, I, I, E, E EE, I, I, E,E, E,E, I I,
E, E, E, E, I, I, E,E EE I, I, E,E,E, E, I, I, E,E,ZE,E,
I, I,E,E,EE I,I,E E EEI,I,E E EE, I, I, E,E,
E,E, I, I, E E E E I, I,E E, E,E I, I,E,E,E,E,I,I,
E, E, E,E, I, I, E E,EE, I, I, E,E,E, E, I, I, E, E,ZE,E,
I, I,E, E, E, E, I, I,E,E,E,E, I, I, E,E,E,E, I, I, E,ZE,
E, E, I, I, E, E, E, E, I]

The primary HDU is not commonly used for scientific data. For us, the interest-
ing part is the second HDU, index 1, which as you can see is a table stored in a
binary format (“BinTableHDU”), with 243500 rows and 233 columns. The big
list that follows lists the type of variable for each column: K are 64-bit-integers,
11A is a string with 11 characters, I a 16 bit integer, E a single precision floating
point.?> For more information about the columns, call the columns attribute
of the table. The table, as we have seen, is the second element of the hdulist,
namely hdulist[1]:

In: hdulist[1].columns
Out:
ColDefs(
name = ’specobjid’; format = ’K’; null = -9223372036854775808
name = ’dr8objid’; format = ’K’; null = -99
name = ’dr7objid’; format = ’K’
name = ’ra’; format = ’E’
name = ’dec’; format = 'E’
name = ’rastring’; format = ’11A°
name = ’decstring’; format = ’11A°
name = ’sample’; format = ’20A’
name = ’gz2class’; format = ’20A°
name = ’total_classifications’; format = ’I’
name = ’total_votes’; format = ’I’

...I am not showing all of the output, but as you can see, this returns the
column names as well as their types. In order to extract the data, we will use
the data attribute of the table object. Once we have opened the HDULIST and
assigned it to a variable hdulist, we can get the data via

tdata = hdulist[1] .data

To access a specific column from this table, you can use that column’s name as
follows:

In: tdata.field(’specobjid’)
Out:

25 All the different types can found on [http://docs.astropy.org/en/stable/io/fits /usage/table.html]
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array ([1802674929645152256, 1992983900678285312, 1489568922213574656,
., 1959146978059249664, 467329305811118080, -9999])

As a result, we obtain the column named ’specibjid’ as an array. We can use
the usual index conventions to get elements, such as

In: tdata.field(’specobjid’) [4]
Out: 1387165355897546752

to access the fifth element in the list.

9.2 Opening an ASCII table in python

Some tables are in ascii format — an ASCII file with elements belonging to the
various column the columns separated by spaces or other symbols, or defined
because each column has a pre-defined width.

As an example, download the csv (comma-separated values) version of the
Galaxy Zoo Data Release table 5 we had already opened as a FITS file in
the previous section, namely [zooniverse-data.s3.amazonaws.com/galaxy-zoo-
2/z002MainSpecz.csv.gz]. Astropy has an “ascii” submodule to handle such
files as follows:

from astropy.io import ascii
tdata=ascii.read(’zoo2MainSpecz.csv’)

The resulting tdata is a table object in Astropy. With the info attribute, you
can once more get a list of all columns and their types:

In: tdata.info
Out:
<Table masked=True length=243500>
name dtype n_bad
specobjid int64 14
dr8objid int64 3752
dr7objid int64 0
ra float64 0
dec float64 0
rastring stril 0
decstring stril 0
sample str8 0
gz2class str8 0

Again, this is only the start of a much longer list. The name and data type of
the column are given; I suppose n_bad counts empty or malformed entries, but
couldn’t find the proper documentation. For columns with numerical values,
information like the minimum, maximum and mean value are provided, as well.
Using a column name as the key will again give you data from that column:

In: tdatal’specobjid’]
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zooniverse-data.s3.amazonaws.com/galaxy-zoo-2/zoo2MainSpecz.csv.gz
zooniverse-data.s3.amazonaws.com/galaxy-zoo-2/zoo2MainSpecz.csv.gz

Out:

<MaskedColumn name=’specobjid’ dtype=’int64’ length=243500>
1802674929645152256

1992983900678285312

1489568922213574656

2924083625089591296

1387165355897546752

1833070384862226432

1809324500555163648

where I have again shortened the output. Using a list index gives a specific
entry in that column:

In: tdatal[’specobjid’][4]

Out: 1387165355897546752

9.3 Making a table query using pyvo

In sections 4.3 and 4.4, we used TOPCAT to send remote queries written in the
ADQL query language to Virtual Observatory services. These queries helped
us to select specific data from existing catalogs.

Using the module pyvo, we can do the same in Python. The module is
not included in the standard Anaconda setup, though, and you will need to
import it. In Linux and on a Mac, going to the command line and entering
pip install pyvo should do the trick. In Windows, your Anaconda directory
should somewhere include the file pip.exe. If you open the command line tool
and execute pip.exe install pivo, that should work for you. Once you have
installed pyvo, you can run queries like the following:

import pyvo as vo
import matplotlib.pyplot as plt

service = vo.dal.TAPService("http://gea.esac.esa.int/tap-server/tap")
resultset = service.search(

nnn

SELECT TOP 1000000

1,b

FROM gaiadr2.gaia_source

ORDER BY RANDOM_INDEX

B

plt.clf ()

plt.hist2d((resultset[’1°]1+180.0) % 360,resultset[’b’], bins=(200,
200), cmap=plt.cm.jet)

plt.savefig(’gaia-plot.pdf’,bbox_inches=’tight’)

First, we are importing pyvo, then matplotlib. Then, we are defining a service;
the URL is the service URL, where one can connect with the data base. This
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particular data base is the same one as the GAIA service we have used in
sections 4.3 and 4.4.

Then, I am performing a search using that service. Recall that a multi-line
string in Python begins with a triple set of double quotation marks, """. In this
case, the multi-line string contains the ADQL query, using the same syntax you
have learned in section 4.4. This time, we are retrieving the properties galactic
longitude 1 and galactic latitude b, referring to the coordinate system in which
the Milky Way band across the sky is at latitude b=0. We are again using the
RANDOM_INDEX to retrieve a random subsample of Gaia point sources.

In the lower part, we plot a 2d-histogram, that is, a density plot for the
objects we have retrieved. As you can see, we access the list of all retrieved
galactic longitudes 1 by calling up resultset[’1’], while we get the list of
latitudes b by calling up resultset[’b’]. This is the same as for other tables,
where we can retrieve a column by using the column name as an index. The
combination (resultset[’1’]+180.0) 7% 360 is used to shift the galactic lon-
gitude by 180 degrees. That way, the galactic center is not around 1=0, that
is, at the left and right margin of the image, but in the center. The resulting
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Figure 94: Plot of Gaia stars, retrieved with PyVO

image gaia-plot.pdf can be seen in Fig. 94. Once more, the Milky Way, the
Large Magellanic Cloud and the Small Magellanic Cloud are clearly visible.

10 Astronomical image manipulation with Python

All professional astronomical images are in the FITS format, file extension
fits or .fit, which stands for “Flexible Image Transport System”. Where your
ordinary JPG file gives you 256 steps between darkest and brightest (8 bits,
separately for each color RGB), FITS gives you, by default, 65536, or 16 bits.
That’s a lot of contrast. In section 3, we learned how to use application software
to take a look at, and perform some measurements in, images in FITS format.
Let’s see how we can display and analyse FITS images in Python.
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10.1 FITS files and python

In order to open aFITS image file in Python, we once more use the Astropy
sub-module astropy.io. Just as we did with FITS tables in section 9.1, we
first load the HDU list. For convenience, we use one of the Hubble Space
Telescope images we had already downloaded in section 3.1, namely the file
hst_05773_05_wfpc2_f502n_wf_drz.fits. We load the file’s HDU list like this:

from astropy.io import fits
hdulist=fits.open(’hst_05773_05_wfpc2_£502n_wf_drz.fits’)

If we call the function info on the hdulist, we are shown the different header/data
units of this fits file:

In: hdulist.info()

Out:

Filename: hst_05773_05_wfpc2_£f502n_wf_drz.fits

No. Name Type Cards Dimensions Format

0  PRIMARY PrimaryHDU 509 ()

1 SCI ImageHDU 103 (2150, 2150) float32
2 WHT ImageHDU 124 (2150, 2150) float32
3 CTX ImageHDU 123 (2150, 2150) int32

We are interested in the science image SCI, the second HDU, hence the one
with index 1. The header component of this will give you access to the header:

In: hdulist[1] .header

OQut: Out[279]:

XTENSION= ’IMAGE ° / Image extension

BITPIX = -32 / array data type

NAXIS = 2 / number of array dimensions

NAXIS1 = 2150

NAXIS2 = 2150

PCOUNT = 0 / number of parameters

GCOUNT = 1 / number of groups

CRVAL1 = 274.7173822566667 / right ascension of reference pixel
(deg)

CRVAL2 = -13.83106772194444 / declination of reference pixel (deg)

CRPIX1 = 1075.0 / x-coordinate of reference pixel

CRPIX2 = 1075.0 / y-coordinate of reference pixel

Once again, I am showing only a small part of the output here. You can access
specific header information by plugging in the respective keyword. This here,
for instance, will give you the number of pixels along the first image dimension:

In: hdulist[1] .header[’NAXIS1’]

Out: 2150

An interesting piece of information is the exposure time in seconds, which is
contained in the header of the primary HDU:
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In: hdulist[0] .header[’EXPTIME’]

Out: 2200.0

The data component of the science HDU will give you the image data. Let’s
define

imdata = hdulist[1].data

10.2 Displaying (showing) an image

7?7 Once we have the image data, we can display it, using matplotlib, using the
imshow function, as follows:

plt.clf()
plt.axes() .set_aspect(’equal’)
plt.imshow(imdata,cmap=’gray’)

The set_aspect (’equal’) tells matplotlib that both x and y axes should have
the same scale, as behoves two spatial directions spanning a two-dimensional
plane. The cmap option tells imshow which colormap to use, in this case
grayscale; many others are possible. The result is at first rather dark, as you can
see in Fig. 95. Just like with DS9, we somehow need to map the high contrast
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Figure 95: This is not the image of a black hole

of the FITS image to our more modestly contrasted version. We can use the
clim option to map a more restricted range of values to our image. Let’s look
at the 1st and 99th percentile values of the image data (that is, the brightness
value below which the darkest 1% of the pixels fall, and the brightness value
above which 1% of the pixels fall). We can access those descriptive numbers by

typing

121



https://matplotlib.org/examples/color/colormaps_reference.html

In: np.percentile(imdata,1)
Out: -0.028674498219043016

In: np.percentile(imdata,99)
Out: 0.068247721269726738

With the results, we can plot the image setting more suitable brightness limits
(more generally, limits for our color map) like this:

plt.clf()
plt.axes().set_aspect(’equal’)
plt.imshow(imdata,cmap=’gray’,clim=(-0.03,0.088))

The result can be seen in Fig. 96.
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Figure 96: HST image of M 16, with adapted colourmap

10.3 Pixelwise operations

The image data we have put on display is an array. Specifically, you can see
this as

In: type(imdata)

Out: numpy.ndarray

and

In: imdata.shape

Out: (2150, 2150)

which shows you that the image is a Numpy array 2150 x 2150. Just like
with any other array, we can retrieve pixel-wise information. For instance, the
brightness value of the pixel x = 1200,y = 1400 can be retrieved as
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In: imdata[1400] [1200]

Out: 0.030607721

Note the counter-intuitive order — the first square parentheses contain the y
value, the second one the x value! We can change pixel values in the same way,
by assigning a new value to a specific imdataly] [x]. Being able to read out
and manipulate pixels individually gives us substantial power to analyse the
image. We can use all the tools the previous sections have put at our disposal,
comparing pixel values, or summing them up.

Let us perform at least some basic operations on the SDSS data file frame-
2-007923-5-0307.fits that we had downloaded and analysed in sections 3.6 and
3.7. It’s usually good idea to take an overall look at the image one intends to
analyse, which we have learned to do in this way:

hdulistS=fits.open(’frame-g-007923-5-0307.fits’)
imdataS=hdulistS[0].data

lowerOne = np.percentile(imdataS,1)
upperOne = np.percentile(imdataS,99)

plt.clf()
plt.imshow(imdata$, cmap=’gray’,clim=(lowerOne,upperQOne))
plt.savefig(’sdss-py.pdf’,bbox_inches=’tight’)

The result is shown in Fig. 97. Next, let us see if we can re-do the simple
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Figure 97: SDSS DR frame displayed with imshow

aperture photometry measurements. The stars we had compared in section 3.7
were located at X = 1819, Y = 1215 and X = 1123, Y = 32, respectively. We
can use x1im and ylim to zoom in onto those locations; for instance, amending
the plot with
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1819
1215

centerX
centerY

plt.xlim(centerX-100,centerX+100)
plt.ylim(centerY-75,centerY+75)

we obtain a detailed view all around the first of the stars, 200 pixels in width,
150 in height. Next, we will visualize both the position of the star we are inter-
ested in, and the surrounding regions we will use in our aperture photometry
measurements. To this end, we will add a circle to our diagram, centered on
the star. The proper way of doing this is

thisCircle = plt.Circle((centerX, centerY), 10,
color="r’,fill=False,lw=2)
plt.gca() .add_artist(thisCircle)

This has two parts. In the first part, we define a circle centered on (1819, 1215)
with radius 10, the colour red, which is not filled, just an outline with linewidth
2. The second line adds this circle to the axes object of our figure. We repeat
those commands with radius 20; the outer circles mark the area we will use
for determining the background brightness. Note that in repeating those com-
mands, we need not even choose a different name for the variable thisCircle.
Once we have pushed the object onto our diagram using add_artist, the vari-
able has done what it was meant to be, and we can use it to define, and draw,
another circle. The result can be see in Fig. 98. Next, we can do aperture
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Figure 98: Detailed view of the region around the first star, with an inner circle and outer
annulus marked

photometry as in section 3.7. First, we determine the sum of pixel brightness
values in the outer circle, as well as the area of that outer circle in pixels.

124




radius=20
photCollector=np.array([])
for ii in range(centerX-radius, centerX+radius):
for jj in range(centerY-radius,centerY+radius):
distance = np.sqrt((ii-centerX)**2 + (jj-centerY)**2 )
if distance < radius:
photCollector= np.append(photCollector, imdataS[jjl[iil])

Cl = np.sum(photCollector)
A1l = len(photCollector)

As a result, I obtain C1=107.65 and an area of A1l = 1245 pixels. For the inner
circle, with radius 10 pixel, T get C2 = 101.12 with an area A2 = 305 pixels.
Using the brightness formula (6),

—e, GG, w0
we subtract from the sum of brightness values C5 the sum of background bright-
ness values (as estimated by the average of the brightness values in the annu-
lus bounded by the inner and the outer circle). For the first star, I get the
brightness [4 = 12.60. I repeat the procedure for the second star, the one at
X =1123, Y = 32, and obtain C1 = 107.47 with an area of A1 = 2809 pixels,
and C2 = 107.65 for an area of A1= 1245 pixels. Using once more the brightness
formula (16), the star’s background-subtracted brightness is {5 = 107.80.

As T had already argued in section 3.7, given that the collecting area and
the exposure time are the same in both cases, the ratio of our values I and [ 4
should be the same as the ratio of the intensities of the two stars; inserting this
into equation (1) for the astronomical magnitudes, we find

I 12.
ma —mp = —2.5-log (;‘) = -25-log <10768> =2.33, (17)
B .

again not far from the difference in the stars’ catalog g magnitudes (gmag) of
2.13.

This is a single example of how we can use our ability to access an astro-
nomical image pixel by pixel unlocks a treasure trove of analytical possibilities.
Once we have loaded FITS data, the full force of coding can be brought into
play. Our aperture photometry example was comparatively simple. More com-
plex operations are possible: We could fit a brightness profile to an extended
source, or try to reconstruct the point-spread function for a point source. We
could even try to have our script identify objects such as stars automatically, by
checking brightness differences. The possibilities are virtually endless, definitely
so in that astronomers will continue to bring to bear new analysis tools as they
are being developed. Recent applications of machine learning in astronomy are
a pertinent example.
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11 A simple simulation

So far, we have almost exclusively dealt with observational data, either im-
ages/spectra or higher-level table data. But another branch of research is fo-
cused on simulated data. Simulations have different uses. Some are meant

to provide a point of comparison for observations. For instance, if you really
want to understand all the details of the spectral line shape in a stellar spec-
trum, you will need access to the results of simulations for the genesis of those
lines. The newest versions take into account complex effects such as the ab-
sence of local thermodynamic equilibrium (a common simplification). Compare
the simulated spectra for different stellar parameter values (such as chemical
abundances) with your observations, and you can deduce the properties of your

Figure 99: Left: Thin slice through the universe as simulated with the TNG300 simulation of
TustrisTNG. The structure shown is that of ordinary matter (baryons) in the universe. The
brightness of the coloured filaments indicates the projected mass density, while the hue of the
colour indicates the mean temperature of the gas in question. Right: Details of a massive disk
galaxy at redshift z = 1, simulated with the TNG50 simulation. Image: TNG collaboration

Other simulations are more ambitious in scope. The various runs of the
MustrisTNG?” simulation, for instance, follow a cubic region within the cosmos
from shortly after the Big Bang to the present. The simulation runs are of dif-
ferent degrees of coarseness, simulating either a very highly resolved cube with a
sidelength of 50 million parsecs, a less well resolved cube of 100 Mpc or a larger,
but still less resolved cube 300 Mpc a side. The simulation is mostly based on
“particles” representing dark matter, stars, and gas, and simulates numerous
physical processes including the influence of magnetic fields, the formation and
evolution of stars in galaxies, the production of heavier elements in stars, and
interactions with the supermassive black holes in the centres of galaxies. All

26 A sample set of tools from the group of Maria Bergemann at the Max Planck Institute
for Astronomy can be found on [http://nlte.mpia.de].
2"More information can be found at [http://www.tng-project.org].
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in all, the IustrisTNG simulations follow the evolution of the universe over
the full 13.8 billion years, including diverse length scales from those on which
the cosmos is, on average, homogeneous, down to those of the sub-structure of
galaxies, cf. Fig. 99.

As T have written before, the details of such simulations call for (at least!) a
whole set of lecture notes of their own. Most of that knowledge is far beyond the
scope of the present text; I will, however, present a very simple example that
illustrates at least some basic techniques, and also some elementary pitfalls, of
numerical simulations.

11.1 Step-by-step numerical integration: Euler method

We revert to what is probably the most basic (and arguably most useful!)
elementary system in all of physics: The harmonic oscillator. The basic set-up
is as shown in Fig. 100: A particle with mass m, which can move only in the
(horizontal) x direction, is fixed to the wall with a spring. If the particle is
displaced from its rest position at x = 0, the spring exerts a force following
Hooke’s law, F, = —k - x, with k the spring constant. This system has the

Figure 100: Harmonic oscillator: particle on a spring

advantage that its equation of motion,
mi = —k-x, (18)

linking the x acceleration Z and the force using Newton’s second law, is readily
solved analytically, that is, in terms of a simple mathematical function. The
solution is

x(t) = A - sin(wt), (19)

where the angular frequency w is linked to the system’s oscillation period T by
the standard definition

2
= —, 20
w= = (20)
and the equations of motion in this particular case demand
k
=/ =, 21
w=y/o (21)

Differentiating the orbit equation (19) once with respect to time, we have

T=w-A-cos(wt), (22)
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and differentiating with respect to time once more,
. 9 . k

i=-w* A -sin(wt) = —— -z, (23)
m

which shows that our solution (19) indeed satisfies the equation of motion (18).
So far, so elementary. But now, pretend that we do not know of this simple
solution. How can we simulate the system, in other words: find a solution not
analytically, but numerically?

The basic idea is that, if we look at very small time interval, all of the
changes during such an interval will be approximately linear. This, is, after
all, the definition of a derivative: over an infinitesimally small interval d¢, the
change of the function z(t), namely dz, is given by

dz = i - dt. (24)

Replace the infinitesimally small interval dt¢ by a finite small interval At, and
what was an equality in (24) becomes an approximation, whose quality depends
on the magnitude of At: the smaller At, the better the approximation. Thus,
if we know the particle’s x position at one time ¢, we can estimate its position
at a slightly later time ¢ + At as

a(t+ At) = 2(t) + v(t) - At (25)

where v(t) is the particle’s velocity in x direction at the time ¢t. What this
formula does not encode, of course, is how v(t) changes over time. But for the
change of v, we can write down a similar equation. The rate of change of the
velocity, after all, is the acceleration, which by Newton’s second law F' = mZ is
linked to the force acting on the particle. Thus, to obtain the velocity at some
time ¢t + At, we can use the approximation

Ft)

v(t+ At) = v(t) + &(t) - At = v(t) + -

- At. (26)
Incidentally, in writing down the approximation equations (25) and (26), we
have applied a technique that can be used much more generally, when dealing
with higher-order differential equations: We have transformed a single second-
order differential equation (for Z) into a system of (two) first order equations,
each of which we have solved approximately, in going from t to ¢ + At.

Now, we can discretize the whole problem: We consider time steps t;, with
i=1,..., N, and evaluate the position and the velocity of our particle at each
step. We choose the times ¢; equidistant, with ¢;11 — t; = At for all 4, for some
fixed, small At.

(What is small, and more specifically: what is sufficiently small? That de-
pends on the problem’s characteristic time scale, and requires physical thought.
With hindsight (or by looking at the analytical solution), we know that we are
dealing periodic, oscillatory motion, so whatever interval At we choose had
better be much smaller than the system’s natural period T'. If we cannot find
a physical time scale to ascribe to the system, we might need to fall back on
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experimentation. If the solution changes significantly when we repeat the sim-
ulation with ever smaller A¢, that is an indication we have not reached the
proper resolution yet. If, on the other hand, the solution remains pretty much
the same when we replace, say, At by At/2, that is an indication that we have
reached the regime where the finite size of At does not exert significant influence
on our result any more.)

Differential equations do not, on their own, completely determine what is
happening. It is necessary to specify initial conditions in order to define a
unique solution. As an example, consider what happens when you throw a ball
vertically upward from the Earth’s surface. The differential equations tell you
how Earth’s gravity will accelerate the ball. But those equations alone are not
sufficient to tell you what happens. For a prediction, you will need to specify
both the ball’s initial position and it’s initial velocity. Both those initial values
are crucial in determining how the ball will move, and in particular whether it
will fall back to Earth or keep going forever (when its velocity is larger than
the position-dependent escape velocity).

In this case, let us choose an initial position xg and initial speed vy for our
particle. Let x; be the object’s position at time t;, v; its velocity in x direction
at that time, a; its acceleration and F; the force acting on it at the time. The
simple, step-wise evolution equations we have derived are

1

Vil = vita;- At=v;+ —F;- At (27)
m

Tir1 = x; +v;- At. (28)

The process of following the evolution step by step is called numerical integra-
tion, and the simple algorithm we have given for going from one step to the
next is called Euler’s method. In our case, with the Hooke force (18), the force
depends only on the position, so the velocity equation reads

k
Vi+1 = U3 — — X4 * At. (29)
m

This is readily implemented in Python, for instance in the following way, using
the loop function. (The array tCollector is only defined in preparation of plot-
ting positions against time later on, and not used in the numerical integration
itself.)

k=0.5

m=1.0

number0fSteps = 30000
DeltaT = 0.001

tCollector=np.linspace(0,number0fSteps*DeltaT,number0fSteps+1)
# Initial conditions:

xCollector=[1.0]

vCollector=[0]

for ii in range(numberOfSteps):
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xNew = xCollector[-1] + DeltaT*vCollector[-1]

vNew = vCollector[-1] + DeltaT*(-k/m*xCollector[-1])
xCollector.append (xNew)

vCollector.append (vNew)

Plotting the result, as in Fig. 101, shows that we indeed obtain the proper sine

1.00 A

0.75 1

0.50 1

0.25 1

0.00 A

X Position

—0.25 1

—0.50 1

—0.75 1

—1.00 1

0 5 10 15 20 25 30
Time

Figure 101: Solution of the harmonic oscillator equation with initial position 1.0 and initial
speed 0.0

shape, shifted so as to form a cosine function. (Why cosine instead of sine?
Because, by choosing our initial condition to be v = 0, we start our evolution
at the maximum x value.)

11.2 Numerical errors

If T just were to plot the analytical solution and the numerical solution in
the same diagram, the curves would be overlaid so closely that no difference
would be visible upon direct inspection. As an alternative, Fig. 102 shows the
difference between the analytical and the numerical solution for our harmonic
oscillator solution, at each time. There is good news and there is bad news. The
good news is that the differences between the true solution and our simulation
are very small, namely 0.6% at most, and much better for most of the time.
The bad news is that the differences are getting larger over time. If that trend
continues, and we let our simulation run much further, its deviations from the
true solution will become so large as to be noticeable. Our numerical simulation
is unstable in this sense.

We can understand why that is. Imagine that, in truth, our particle reaches
our maximum x value at time ¢;. From time ¢;_; to time ¢;, we change the x
value by Az = 4wv;_1 - At. But v;_ is the (non-zero) velocity at the beginning
of the interval. Over the time At, that velocity will change to zero (since
velocity zero is what defines the maximum value, the turning point). Thus, the
average velocity over that interval will be smaller than the initial velocity for
that interval. We are overestimating the amount Ax that x increases during
that time. We pretend the object has flown with unchanged initial velocity
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Figure 102: Difference between our numerical solution and the analytical solution

v;—1, whereas, in reality, it has slowed down. That means our turning-point x
will be just a little further out, x a little larger, than in reality.

There is nothing in our simulation to compensate for that larger error.
The system knows nothing of its past. That slightly larger x, that slightly
larger amplitude at the turning point will be carried along for the rest of our
simulation. You can think about it in the following way: Because of the slightly
over-large x when the turning point comes, our system, from then on, has
a slightly larger potential energy than it should have. There is nothing to
compensate; once the extra energy has seeped into the system through the
numerical error, it will remain in the system.

Even worse: At every turning point, the same argument applies, so at every
turning point, the error of having a slightly larger amplitude will increase. The
errors systematically add up. That is what makes the system unstable. Errors
do not compensate each other; errors just add up over time, increasing the
overall deviation from the true time evolution.

Note that the systematic errors, and the instability, are a property of the
algorithm we have used to simulate the time evolution. There are several dif-
ferent algorithms that, in the limit of infinitesimal At, all amount to the same
integration procedure, but which differ in their stability properties and in how
accurate they are for finite At. We will look at one of them in the next section.

11.3 Velocity Verlet algorithm

One example for a better-behaved numerical integration scheme xsis the velocity
Verlet algorithm, which introduces “half-step” velocities, in order to mitigate
problems like those I described in section 11.2, as follows:

1
Vit1/2 = Uit §At " (30)
Tiv1 = T+ Vi1 Al (31)
1
Vit1 = U1t §At C i1, (32)
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where the a; is again calculated from the force acting in time step ¢. In this
algorithm, we avoid always using the initial values of rates-of-change at each
time step, leading to systematic errors; instead, the calculation of x; 1 uses the
intermediate velocity, while the transition from v; to v;41 proceeds in two steps,
one using the acceleration value at the beginning, the second the one at the end
of the interval At. The implementation is, again, fairly straightforward:

k=0.5

m=1.0

number0fSteps = 30000
DeltaT = 0.001

tCollector=np.linspace(0,number0fSteps*DeltaT,number0fSteps+1)

# Initial conditions:
xCollectorVV=[1.0]
vCollectorVV=[0]

for ii in range(numberOfSteps):
vHalf = vCollectorVV[-1] + 0.5%DeltaT*(-k/m*xCollectorVV[-1])
xNew = xCollectorVV[-1] + DeltaT*vHalf
vNew = vHalf + 0.5*%DeltaT*(-k/m*xNew)
xCollectorVV.append (xNew)
vCollectorVV.append (vNew)

The comparison between the results can be seen in Fig. 103. The velocity
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Figure 103: Difference between our numerical solution and the analytical solution, once for
the Euler algorithm, once for the velocity Verlet algorithm (here scaled up artificially by a
factor 10%)

Verlet algorithm, too, appears to be unstable in the long-term, with the error
increasing over time. But the simple of expedient of adding the half-step velocity
has greatly improved the accuracy. After all, note that, in this diagram, I have
scaled up the difference for the velocity Verlet algorithm by a whopping factor
of 10* to make it visible in comparison with the Euler deviations!

This simple example shows the importance of implementing the evolution
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algorithm carefully; finding the best ways of doing this is a science (and possibly
an art) of its own. If you decide to explore this further, you might want to look
at the Runge-Kutta family of iterative methods next.

11.4 A simple two-dimensional simulation

So far, our simple simulation was one-dimensional: motion in the x direction
over time. Let us choose a two-dimensional scenario next, and one that is very
important in astronomy: The motion of a test particle around a central mass
under the influence of the central mass’s (Newtonian) gravity, which provides
a good model for the orbit of a (not too massive) planet around a star.

Let us put the central mass into the origin of our coordinate system. We
treat the x and y components of the motion separately. Since we have two
independent directors, we will need to treat the force as a vector as well, sepa-
rating its x from its y component. Fig. 104 shows the geometry of the situation.
Crucially, the triangle describing the x-y-position of the planet and the triangle

Fy m

Y
8

M

Figure 104: Planet with mass m orbiting in the xy plane under the gravitational influence of
a central mass M in the origin

describing the decomposition of the gravitational force into x and y component
are similar, in the geometric sense: as the figure shows, they have the same set
of three angles. Similar triangles can only differ by an overall length scale. In
particular, ratios of the corresponding sides of such triangles are the same. If
we abbreviate the distance of the planet from the origin (and thus from the

central mass) as
r =%+ y? (33)

(having applied the Pythagorean theorem), then we have

F, =z
— == 34
7 = (34)
and P
y )
-7 35
oo (35)
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For the Newtonian gravitational force, we have

GMm

F=-"2"".

" (36)

Using F, = ma, and Fy = ma, for the link between the force and the acceler-
ation components, we have

1
Vzivl/2 = Vit §At “Qg (37)
Tiyl = T+ Uyiqr/2 - At (38)
1
Uzitl = Ugit1/2t+ iAt Oyt (39)

and analogous equations linking the v, and y values. Note that, via r, the
force at any given step, and thus the acceleration components, depend on both
coordinates.

Next, we need to choose suitable units. Let the central mass have one solar
mass, Mo = 2 - 100 kg. Going by Earth’s orbit, a suitable unit of length
is the astronomical unit (corresponding to the average Earth-Sun distance),
1 au = 1.5- 10" m. As our unit of time, we choose the Julian year: 365.25
standard days, abbreviated as a for the latin “annum” for year, related to the
SI unit, the second, as 1 a = 31 557 600s ~ 7 - 107 s. The corresponding unit
for speed is related to the more usual one as

km au

1— =021 — 40
. " (40)

and the acceleration felt by the planet is given by

1 2
F/m = —39.48 <au) =
r a

The simulation code itself is listed here:

number0fSteps = 30000
DeltaT = 0.0001
accFac = 39.48 # Corresponding to one solar mass, in au per square year

tCollector=np.linspace(0,number0fSteps*DeltaT,number0fSteps+1)

# Initial conditions:
xCollector=[1.5]
vxCollector=[0]
yCollector=[0.0]
vyCollector=[2.0]

for ii in range(number0fSteps):
rNow = np.sqrt(xCollector[-1]**2+yCollector [-1]**2)
accNow = -accFac/rNowx*2
accNowx= accNow*xCollector[-1]/rNow
accNowy= accNowxyCollector[-1]/rNow
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vxHalf = vxCollector[-1] + 0.5%DeltaT*accNowx
vyHalf = vyCollector[-1] + 0.5*DeltaT*accNowy
xNew = xCollector[-1] + DeltaTxvxHalf

yNew = yCollector[-1] + DeltaT*vyHalf
rNew = np.sqrt(xNewx*2 + yNew**2)
accNew = -accFac/rNew**2

accNewx = accNew*xNew/rNew
accNewy = accNewxyNew/rNew
vxNew = vxHalf + 0.b5*DeltaT*accNewx
vyNew = vyHalf + 0.5*DeltaT*accNewy

xCollector.append (xNew)
yCollector.append(yNew)
vxCollector.append (vxNew)
vyCollector.append (vyNew)

For the half-step velocity, we calculate the accelerations in x and y direction,
starting with the magnitude of the acceleration, which follows directly from
Newton’s law. Then, we evolve the position one time step further, re-calculate
the acceleration for the new position, and use those to update the x and y
component of the velocity for the second half of the time step.

To close this section, and put our simulation to the test, let us see if we
can recover Kepler’s three laws of planetary motion from our simulation. We
begin by plotting the shape of the orbit in Fig. 105. That certainly looks like
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Figure 105: Orbit of a planet around a central mass, simulated with the velocity Verlet
algorithm

an elliptical orbit, with the central mass at the origin serving as one of the
focus points. But we should demonstrate this fact in a more quantitative way.
Taking the minimum and maximum x value on our simulated orbit, we find
that the left-most point of the orbit is at x = —0.12335823920305192, while the
rightmost point is, by construction, at x = 1.5 (since that is where we put the
initial position of our particle, its velocity pointing straight upwards).

Thus, our simulated orbit has a major half axis of a = 1.623 au. From the
minimum and maximum of the y coordinate value, we find that the minor half
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axis is b = 0.860 au. For an ellipse, that would correspond to an eccentricity of

b2
e=1/1- 5 =088 (42)

The polar coordinate equation for an ellipse is

a(l—e?)
r(®) = 1+ecosf’ (43)
Inserting our parameter values a and e, we can plot this reference ellipse and
compare with the simulated orbit. The resulting plot looks just like Fig. 105,
with one ellipse directly on top of the other. At least qualitatively, we have
indeed confirmed Kepler’s first law: the orbit of a planet orbiting a central
mass is an ellipse, with the central mass in one of the focal points. More quan-
titatively, we can compare analytical solution and simulation directly. There
are several possibilities for this; with the following piece of code, I take each
simulated point, calculate the position angle 6 and distance r from the focus
point, and compute the absolute value of the difference between the simulated

value r and the analytical value r(#) given by (43):

diffCollector=[]

for x,y in zip(xCollector,yCollector):
r=np.sqrt (x**x2+y**2)
theta = np.arctan2(y,x)
anr = ax(l-e*x2)/(1-e*np.cos(theta))
diffr = np.sqrt((r-anr)**2)
diffCollector.append(diffr)

The histogram of the values contained in diffCollector is shown in Fig. 106.
It has a highly structured shape, and no doubt one could learn a lot about the
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Figure 106: Histogram of the square difference between fitted ellipse and simulated ellipse

systematic errors involved in the simulation by understanding that cascade-like
structure. Such analysis is far beyond our current scope; for our purposes, we
note that this looks definitely non-random and, importantly, that the largest
deviation is 4/10 000 of an astronomical unit. Given that the length scales
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of our orbit (half axis length, circumference) are on a scale of 1 astronomical
unit, that deviation is fairly small, and our simulated planet appears to have
an elliptical orbit.

Next, for Kepler’s second law, which says that the connecting line between
the planet and the central mass sweeps out equal areas in equal time intervals.
Each of our time steps defines the same time interval, so if we calculate the
triangle swept out in each time step (whose three vertices are the planet’s
position at the beginning and at the end of the time step, and the location
of the central mass), we should always obtain the same area. For each such
triangle, we know the x and y coordinates of all three vertices, and thus can
calculate all the side lengths a, b, ¢ using the Pythagorean theorem. With this
information, we can use Heron’s formula to calculate the triangle’s area as

A=/s(s—a)(s—b)(s—c) (44)

where s = (a + b+ ¢)/2 is the triangle’s semi-perimeter. (Alternatively, we
can use half of the cross product of the two position vectors, now viewed as
three-dimensional vectors, to obtain the same result.) The following bit of code
collects the relative deviation of each such triangle area from the mean in an

array relativeDiff:

areaCollector=np.array([])

for x1, x2, y1, y2 in zip(xCollector[1:],
xCollector[:-1],yCollector[1:], yCollector[:-1]):

= np.sqrt (x1x*2+yl**x2)

np.sqrt (x2**2+y2%*2)

np.sqrt ((x1-x2) **2+(y1-y2) **2)

0.5%(atb+c)

np.sqrt(s*(s-a)*(s-b)*(s-c))

areaCollector = np.append(areaCollector,A)

= n 0O TP
1]

averagelArea=np.average (areaCollector)
relativeDiff = (areaCollector-averageArea)/averageArea

A histogram of the values in relativeDiff shows that all those areas, swept
out in the same time interval, are indeed very close to their average value, as
Fig. 107 shows. The distribution shows that we do have a strong maximum at
the average area value, with small (a few parts in a trillion!) fluctuations to
smaller and larger values.

Next, to Kepler’s third law. In Kepler’s own version, this links the orbital
periods T and major elliptical half axis a of different planets orbiting the same
central mass, stating that the ratio a®/T? is the same for all of them. We did
not simulate planets with different initial conditions (although we could), and
thus will check the more advanced form of Kepler’s law found by Newton, which
states that

ad ~GM
T2 4n2
(in the limit we have simulated, namely where the planetary mass m is small
against the central mass M). We have already estimated a. Let us do the same

(45)
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Figure 107: Histogram of the relative difference from the average of the triangle areas corre-
sponding to each time step

for T'. To this end, I have plotted the y coordinate of our planet against time
in Fig. 108. This is unsurprisingly periodical. In order to find out the period,
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Figure 108: The y coordinate of our simulated planet over time

we fold the time evolution: we assume a value for the period T', and define the
phase ¢ in terms of this period as

t
= T mod 1. (46)
All integer multiples of the period T get mapped to 0, all times that can be
written as

t=(n+f)-T (47)

with integer n and 0 < f < 1 get mapped to f. The quick-and-dirty way
of finding the correct period T is to vary the value by hand, and see whether
or not the resulting curves coincide. From Fig. 108, we can read off that the
period is somewhat less than one year. Fig. 109 shows the resulting plot for
T = 0.8 a. The fact that we still see separate, similar curves shows that we
have not quite hit on the correct period yet. By slowly decreasing 7', and re-
plotting, I can bring those separate curves to coincidence. After a few dozen
tries, the final round with a microscopic look at the steepest curve region via
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Figure 109: Phase plot, with an assumed periodicity of T' = 0.8 a, for our simulated orbit

plt.x1im(0.475,0.525), I arrive at T' = 0.7313 a. Note that this is very
similar to how you determine the orbital of an exoplanet by folding the light
curve data (from the transit method) or Doppler shift data (in the radial velocity
method). We could think about automatising this, sorting the phase values
into different arrays indexed by the integer part of ¢/T', and minimising the
differences between those partial curves, but for our little test, I consider the
trial-and-error approach sufficient.

Thus, our final test is to see if this 7" value indeed satisfies equation (45).
The right-hand side of that equation is

15 (48)

by definition, since the Earth does have a semimajor axis of length 1 au (up to
and including the sixth significant degree), and an orbital period of 1 year. By
our estimates, our simulation satisfies

() <1Ta>2 — 0.99991. (19)

The two values coincide up to one part in 10 000. Our simulation reproduces
Kepler’s third law, as well.

This concludes our brief excursion into the realm of simulations. We have, as
ever, only scratched the surface, but along the way, you have encountered some
of the pitfalls and characteristics of numerical simulations, notably the concept
of numerical errors, the question of stability, and the importance of choosing
a suitable algorithm. What we did not encounter was the limitation imposed
by the available computing power. For our purposes, a simple script which
took a few seconds to run was sufficient. As simulations become more complex,
computing time increases, and can become a limiting factor. There are various
ways of addressing this problem, and pushing the limit. Powerful hardware is
one of them. Parallelising calculations, that is, having multiple processors (or
processor cores) tackle different parts of the problem simultaneously, can be a
powerful strategy for many (but not all) simulation problems. Parallelisation is
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achieved by linking multiple processors in a way that automatically distributes
calculations among the available cores. GPUs, graphics processing units, which
commonly operate at lower frequencies but consist of a greater number of cores,
are frequently used for the purpose. Projects like the IllustrisTNG simulation
mentioned at the beginning of this section push the envelope using an immense
amount of computing power. The most calculation-intensive run of that sim-
ulation, TNG300-1, involved 24 000 cores, adding up to a total CPU time of
nearly 34 million hours.?®

12 Conclusion

Working with astronomical data requires a combination of skills. If you have
worked through this text, reproducing the analytical tasks on your own com-
puter, using DS9, TOPCAT and Python, you should have acquired basic profi-
ciency in a number of these skills, and you should now be familiar with several
key tools, both conceptual (histograms! diagrams!) and practical (how to use
different kinds of software to achieve specific purposes).

As we have seen on several occasions, we have only just scratched the surface.
But that is perfectly fine! If you dedicate your career to research, you will
continue to build on what you know. What you have learned here should allow
you to start that life-long process.

You will also have seen that the knowledge needed for data analysis falls
into different categories. It goes without saying that working with astronomical
data requires knowledge of physics, astronomy, and mathematics, specifically
statistics. When you begin working on a new topic, then likely as not in the
beginning, you will not fully understand what you are doing, and how the
different elements you are dealing with fit together properly. Your goal should
be to, eventually, reach the stage where you do understand what is going on.
Such knowledge is required if you want to understand your results, but crucially
also if you want to understand the limitations of your data, and possible ways
of improvement.

As you learn to use new tools, and more advanced tools, your newly acquired
knowledge might also open up new opportunities for exciting science. Applying
a tool that others did not think to apply could be the key step towards finding a
new result. In this respect, it pays to have an eye out for neighbouring fields (or
at least sub-fields). Could what they are doing in their field help you achieve
something new in yours?

Some of the knowledge you need for data analysis is a matter of convention.
How to perform a certain operation in TOPCAT, or plot a certain kind of dia-
gram, is nothing you can deduce logically from previous fundamental knowledge
(although previous experience will help you find the right answer). If the soft-
ware in question is well documented, it makes sense to familiarise yourself with
the basics; the more common strategy is to google what you are looking for.
Everybody does it. Reminding yourself how to “matplotlib equal axis ratio” is
just one search field away. Also, if you are working in an institute, chances are

2#Numbers from Dylan et al. 2017, [http://adsabs.harvard.cdu/abs/2018MNRAS.475..624N]
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there will be experienced people you can ask for help with specific problems.
Last but not least, if you need to accomplish a complex task, and you happen to
have a script which does something similar, it makes sense to get to understand
that other script, to try out variations on what it does, and eventually to adapt
it to your purposes.

Finally, there is meta-knowledge about working with astronomical data.
One piece of good advice is to always look at your data in simple form before
attempting complex operations on it. Make a few basic histograms and dia-
grams to get a feeling for your data, look at an image, or make a quick plot
of a spectrum — incidentally, you might find out that your data is somehow
completely different from what you expected, and that is a good thing to know
early on!

A fairly universal truth you are likely to learn early on is how easy it is to
make mistakes. One reason is that, even while each of the elements of your
analysis might be straightforward, code can become fairly voluminous fairly
quickly once you combine all the different necessary steps. So what do you do
if, at the end of your analysis, your result is surprising, possibly wrong, or even
obviously wrong? Conversely, if things turn out as expected, how can you be
sure that this is not the result of several mistakes cancelling each other out, or
almost cancelling? Such questions would not be important if your goal was just
to create a visually pleasing astronomical image, for instance. But when you are
doing scientific research, you had better understand, and check, every step of
what you are doing; otherwise, you cannot be sure of your result. Your analysis
should contain as many cross-checks as you can come up with, and have time
to implement. After every step, think about what that step is meant to do, and
what you can do to check that the desired result has indeed be achieved. If you
write up your research, such cross-checks and safeguards are likely to make up
an important part of your description of what you did.

Also, make sure your code is comprehensible. The most important element
of this is adding descriptive comments. A person reading your code should be
able to follow what you are doing step by step, guided by your code, but also by
your description in the comments. Remember that the person in question could
be you in a few years — it is amazing how incomprehensible ill-documented code
can become once you return to it a few months or years after having written it!
Meaningful variable names can help with comprehensibility, too.

Last but not least documenting your code is a matter of scientific account-
ability. Science should be reproducible. Your research publications should tell
your colleagues what you have done, so they can build on your results, but
also critically examine what you have done. In an ideal world, every scientific
article would be accompanied by data files and script files; running the script
on the data, you should be able to reproduce the article’s results on your own
computer.?’ (And, in digging into the script, you would have a complete, un-
ambiguous representation of what the article’s authors have done with their
datal!) We’re not there yet, but why not introduce those good practices right
now? Comment and document your code. Preserve the definite version of your

29Cf. Weiner et al. 2009, [https://arxiv.org/abs/0903.3971].
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analysis scripts together with your article. That way, you will always be able
to understand what you did earlier. If colleagues ask, you can give them your
script and your data, and they can check for themselves what you have done.
(And yes, I know you might be worried about giving away your trade secrets. If
that is the case, you could still make your scripts available after some time. The
competitive edge a specific script gives you is likely to become less important
over time in any case.)

Astronomical data has never been as accessible as it is now, and computing
power never as cheap. Observatory and telescope archives provide images and
spectra, catalogs higher-level data like never before. This is likely to get even
better as new facilities come online, and new tools become available. It’s an
exciting time to work with astronomical datal
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