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Abstract

In a series of five lectures I review inflationary cosmology. I begin with a description of the initial

conditions problems of the Friedmann-Robertson-Walker (FRW) cosmology and then explain how

inflation, an early period of accelerated expansion, solves these problems. Next, I describe how infla-

tion transforms microscopic quantum fluctuations into macroscopic seeds for cosmological structure

formation. I present in full detail the famous calculation for the primordial spectra of scalar and

tensor fluctuations. I then define the inverse problem of extracting information on the inflationary

era from observations of cosmic microwave background fluctuations. The current observational ev-

idence for inflation and opportunities for future tests of inflation are discussed. Finally, I review

the challenge of relating inflation to fundamental physics by giving an account of inflation in string

theory.

Lecture 1: Classical Dynamics of Inflation

The aim of this lecture is a first-principles introduction to the classical dynamics of inflationary

cosmology. After a brief review of basic FRW cosmology we show that the conventional Big Bang

theory leads to an initial conditions problem: the universe as we know it can only arise for very spe-

cial and finely-tuned initial conditions. We then explain how inflation (an early period of accelerated

expansion) solves this initial conditions problem and allows our universe to arise from generic initial

conditions. We describe the necessary conditions for inflation and explain how inflation modifies

the causal structure of spacetime to solve the Big Bang puzzles. Finally, we end this lecture with a

discussion of the physical origin of the inflationary expansion.

Lecture 2: Quantum Fluctuations during Inflation

In this lecture we review the famous calculation of the primordial fluctuation spectra gener-

ated by quantum fluctuations during inflation. We present the calculation in full detail and try to

avoid ‘cheating’ and approximations. After a brief review of fundamental aspects of cosmological

perturbation theory, we first give a qualitative summary of the basic mechanism by which inflation

converts microscopic quantum fluctuations into macroscopic seeds for cosmological structure forma-

tion. As a pedagogical introduction to quantum field theory in curved spacetime we then review

the quantization of the simple harmonic oscillator. We emphasize that a unique vacuum state is

chosen by demanding that the vacuum is the minimum energy state. We then proceed by giving the
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corresponding calculation for inflation. We calculate the power spectra of both scalar and tensor

fluctuations.

Lecture 3: Contact with Observations

In this lecture we describe the inverse problem of extracting information on the inflationary

perturbation spectra from observations of the cosmic microwave background and the large-scale

structure. We define the precise relations between the gauge-invariant scalar and tensor power spec-

tra computed in the previous lecture and the observed CMB anisotropies and galaxy power spectra.

We give the transfer functions that relate the primordial fluctuations to the late-time observables.

We then use these results to discuss the current observational evidence for inflation. Finally, we

indicate opportunities for future tests of inflation.

Lecture 4: Primordial Non-Gaussianity

In this lecture we summarize key theoretical results in the study of primordial non-Gaussianity.

Most results are stated without proof, but their significance for constraining the fundamental phys-

ical origin of inflation is explained. After introducing the bispectrum as a basic diagnostic of non-

Gaussian statistics, we show that its momentum dependence is a powerful probe of the inflationary

action. Large non-Gaussianity can only arise if inflaton interactions are significant during inflation.

In single-field slow-roll inflation non-Gaussianity is therefore predicted to be unobservably small,

while it can be significant in models with multiple fields, higher-derivative interactions or non-

standard initial states. Finally, we end the lecture with a discussion of the observational prospects

for detecting or constraining primordial non-Gaussianity.

Lecture 5: Inflation in String Theory

We end this lecture series with a discussion of a slightly more advanced topic: inflation in string

theory. We provide a pedagogical overview of the subject based on a recent review article with Liam

McAllister. The central theme of the lecture is the sensitivity of inflation to Planck-scale physics,

which we argue provides both the primary motivation and the central theoretical challenge for

realizing inflation in string theory. We illustrate these issues through two case studies of inflationary

scenarios in string theory: warped D-brane inflation and axion monodromy inflation. Finally, we

indicate opportunities for future progress both theoretically and observationally.
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Part I

Introduction

“I’m astounded by people who want to ‘know’ the Universe

when it’s hard enough to find your way around Chinatown”

Woody Allen

Figure 1: Fluctuations in the Cosmic Microwave Background (CMB). What produced them?

1 The Microscopic Origin of Structure

1.1 TASI 2009: The Physics of the Large and the Small

The fluctuations in the temperature of the cosmic microwave background (CMB) (see Fig. 1) tell

an amazing story. Measured now almost routinely by experiments like the Wilkinson Microwave

Anisotropy Probe (WMAP), the temperature variations of the microwave sky bear testimony of

minute fluctuations in the density of the primordial universe. These fluctuations grew via gravita-

tional instability into the large-scale structures (LSS) that we observe in the universe today. The

success in relating observations of the thermal afterglow of the Big Bang to the formation of struc-

tures billions of years later motivates us to ask an even bolder question: what is the fundamental

microphysical origin of the CMB fluctuations? An answer to this question would provide us with

nothing less than a fundamental understanding of the physical origin of all structure in the universe.

In these lectures, I will describe the currently leading working hypothesis that a period of cosmic

inflation was integral part of this picture for the formation and evolution of structure. Inflation [1–3],
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a period of exponential expansion in the very early universe, is believed to have taken place some

10−34 seconds after the Big Bang singularity. Remarkably, inflation is thought to be responsible

both for the large-scale homogeneity of the universe and for the small fluctuations that were the

seeds for the formation of structures like our own galaxy.

The central focus of this lecture series will be to explain in full detail the physical mechanism

by which inflation transformed microscopic quantum fluctuations into macroscopic fluctuations in

the energy density of the universe. In this sense inflation provides the most dramatic example

for the theme of TASI 2009: the connection between the ‘physics of the large and the small’.

We will calculate explicitly the statistical properties and the scale dependence of the spectrum of

fluctuations produced by inflation. This result provides the input for all studies of cosmological

structure formation and is one of the great triumphs of modern theoretical cosmology.

1.2 Structure and Evolution of the Universe

There is undeniable evidence for the expansion of the universe: the light from distant galaxies is

systematically shifted towards the red end of the spectrum [4], the observed abundances of the light

elements (H, He, and Li) matches the predictions of Big Bang Nucleosynthesis (BBN) [5], and the

only convincing explanation for the CMB is a relic radiation from a hot early universe [6].

3 min Time [years] 380,000 13.7 billion10 -34 s
Redshift 026251,10010 4

Energy 
1 meV1 eV1 MeV10 15 GeV

Scale a(t) 

10 -

?

Cosmic Microwave Background
Lensing

Ia

QSO
Lyα

gravity waves
B-mode Polarization

21 cm

neutrinos

recombination
BBNreheating

In
fla

tio
n

reionization
galaxy formation dark energy

LSS
BAO

dark ages

density fluctuations

Figure 2: History of the universe. In this schematic we present key events in the history of the

universe and their associated time and energy scales. We also illustrate several cos-

mological probes that provide us with information about the structure and evolution

of the universe. Acronyms: BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Struc-

ture), BAO (Baryon Acoustic Oscillations), QSO (Quasi-Stellar Objects = Quasars),

Lyα (Lyman-alpha), CMB (Cosmic Microwave Background), Ia (Type Ia supernovae),

21cm (hydrogen 21cm-transition).
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Two principles characterize thermodynamics and particle physics in an expanding universe: i)

interactions between particles freeze out when the interaction rate drops below the expansion rate,

and ii) broken symmetries in the laws of physics may be restored at high energies. Table 1 shows the

thermal history of the universe and various phase transitions related to symmetry breaking events.

In the following we will give a quick qualitative summary of these milestones in the evolution of

our universe. We will emphasize which aspects of this cosmological story are based on established

physics and which require more speculative ideas.

Table 1: Major Events in the History of the Universe.

Time Energy

Planck Epoch? < 10−43 s 1018 GeV

String Scale? & 10−43 s . 1018 GeV

Grand Unification? ∼ 10−36 s 1015 GeV

Inflation? & 10−34 s . 1015 GeV

SUSY Breaking? < 10−10 s > 1 TeV

Baryogenesis? < 10−10 s > 1 TeV

Electroweak Unification 10−10 s 1 TeV

Quark-Hadron Transition 10−4 s 102 MeV

Nucleon Freeze-Out 0.01 s 10 MeV

Neutrino Decoupling 1 s 1 MeV

BBN 3 min 0.1 MeV

Redshift

Matter-Radiation Equality 104 yrs 1 eV 104

Recombination 105 yrs 0.1 eV 1,100

Dark Ages 105 − 108 yrs > 25

Reionization 108 yrs 25− 6

Galaxy Formation ∼ 6× 108 yrs ∼ 10

Dark Energy ∼ 109 yrs ∼ 2

Solar System 8× 109 yrs 0.5

Albert Einstein born 14× 109 yrs 1 meV 0

From 10−10 seconds to today the history of the universe is based on well understood and exper-

imentally tested laws of particle physics, nuclear and atomic physics and gravity. We are therefore

justified to have some confidence about the events shaping the universe during that time.

Let us enter the universe at 100 GeV, the time of the electroweak phase transition (10−10 s).

Above 100 GeV the electroweak symmetry is restored and the Z and W± bosons are massless. In-

teractions are strong enough to keep quarks and leptons in thermal equilibrium. Below 100 GeV

the symmetry between the electromagnetic and the weak forces is broken, Z and W± bosons ac-

quire mass and the cross-section of weak interactions decreases as the temperature of the universe

drops. As a result, at 1 MeV, neutrinos decouple from the rest of the matter. Shortly after, at
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1 second, the temperature drops below the electron rest mass and electrons and positrons annihi-

late efficiently. Only an initial matter-antimatter asymmetry of one part in a billion survives. The

resulting photon-baryon fluid is in equilibrium. Around 0.1 MeV the strong interaction becomes

important and protons and neutrons combine into the light elements (H, He, Li) during Big Bang

nucleosynthesis (∼ 200 s). The successful prediction of the H, He and Li abundances is one of the

most striking consequences of the Big Bang theory. The matter and radiation densities are equal

around 1 eV (1011 s). Charged matter particles and photons are strongly coupled in the plasma

and fluctuations in the density propagate as cosmic ‘sound waves’. Around 0.1 eV (380,000 yrs)

protons and electrons combine into neutral hydrogen atoms. Photons decouple and form the free-

streaming cosmic microwave background. 13.7 billion years later these photons give us the earliest

snapshot of the universe. Anisotropies in the CMB temperature provide evidence for fluctuations in

the primordial matter density.

These small density perturbations, ρ(x, t) = ρ̄(t)[1+ δ(x, t)], grow via gravitational instability to

form the large-scale structures observed in the late universe. A competition between the background

pressure and the universal attraction of gravity determines the details of the growth of structure.

During radiation domination the growth is slow, δ ∼ ln a (where a(t) is the scale factor describing

the expansion of space). Clustering becomes more efficient after matter dominates the background

density (and the pressure drops to zero), δ ∼ a. Small scales become non-linear first, δ & 1, and

form gravitationally bound objects that decouple from the overall expansion. This leads to a picture

of hierarchical structure formation with small-scale structures (like stars and galaxies) forming first

and then merging into larger structures (clusters and superclusters of galaxies). Around redshift

z ∼ 25 (1 + z = a−1), high energy photons from the first stars begin to ionize the hydrogen in the

inter-galactic medium. This process of ‘reionization’ is completed at z ≈ 6. Meanwhile, the most

massive stars run out of nuclear fuel and explode as ‘supernovae’. In these explosions the heavy

elements (C, O, . . . ) necessary for the formation of life are created, leading to the slogan “we are

all stardust”. At z ≈ 1, a negative pressure ‘dark energy’ comes to dominate the universe. The

background spacetime is accelerating and the growth of structure ceases, δ ∼ const.

1.3 The First 10−10 Seconds

The history of the universe from 10−10 seconds (1 TeV) to today is based on observational facts

and tested physical theories like the Standard Model of particle physics, general relativity and fluid

dynamics, e.g. the fundamental laws of high energy physics are well-established up to the energies

reached by current particle accelerators (∼ 1 TeV). Before 10−10 seconds, the energy of the universe

exceeds 1 TeV and we lose the comfort of direct experimental guidance. The physics of that era is

therefore as speculative as it is fascinating.

To explain the fluctuations seen in the CMB temperature requires an input of primordial seed

fluctuations. In these lectures we will explain the conjecture that these primordial fluctuations

were generated in the very early universe (∼ 10−34 seconds) during a period of inflation. We will

explain how microscopic quantum fluctuations in the energy density get stretched by the inflationary

expansion to macroscopic scales, larger than the physical horizon at that time. After a perturbation

exits the horizon no causal physics can affect it and it remains frozen with constant amplitude until it

re-enters the horizon at a later time during the conventional (non-accelerating) Big Bang expansion.

The fluctuations associated with cosmological structures re-enter the horizon when the universe is

12



about 100,000 years olds, a short time before the decoupling of the CMB photons. Inside the horizon

causal physics can affect the perturbation amplitudes and in fact leads to the acoustic peak structure

of the CMB and the collapse of high-density fluctuations into galaxies and clusters of galaxies. Since

we understand (and can calculate) the evolution of perturbations after they re-enter the horizon we

can use the late time observations of the CMB and the LSS to infer the primordial input spectrum.

Assuming this spectrum was produced by inflation, this gives us an observational probe of the

physical conditions when the universe was 10−34 seconds old. This fascinating opportunity to use

cosmology to probe physics at the highest energies will be the subject of these lectures.

2 Outline of the Lectures

In Lecture 1 we introduce the classical background dynamics of inflation. We explain how inflation

solves the horizon and flatness problems. We discuss the slow-roll conditions and reheating and

speculate on the physical origin of the inflationary expansion. In Lecture 2 we describe how quantum

fluctuations during inflation become the seeds for the formation of large-scale structures. We present

in full detail the derivation of the inflationary power spectra of scalar and tensor perturbations, R
and hij . In Lecture 3 we relate the results of Lecture 2 to observations of the cosmic microwave

background and the distribution of galaxies, i.e. we explain how to measure PR(k) and Ph(k) in

the sky! We describe current observational constraints and emphasize future tests of inflation. In

Lecture 4 we present key results in the study of non-Gaussianity of the primordial fluctuations. We

explain how non-Gaussian correlations can provide important information on the inflationary action.

We reserve Lecture 5 for the study of an advanced topic that is at the frontier of current research:

inflation in string theory. We describe the main challenges of the subject and summarize recent

advances.

To make each lecture self-contained, the necessary background material is presented in a short

review section preceeding the core of each lecture. Every lecture ends with a summary of the

most important results. An important part of every lecture are problems and exercises that appear

throughout the text and (for longer problems) as a separate problem set appended to the end of the

lecture. The exercises were carefully chosen to complement the material of the lecture or to fill in

certain details of the computations.

A number of appendices collect standard results from cosmological perturbation theory and

details of the inflationary perturbation calculation. It is hoped that the appendices provide a useful

reference for the reader.
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Notation

We have tried hard to keep the notation of these lectures coherent and consistent:

Throughout we will use the God-given natural units

c = ~ ≡ 1 .

We use the reduced Planck mass

Mpl = (8πG)−1/2 ,

and often set it equal to one. Our metric signature is (−+ ++). Greek indices will take the values

µ, ν = 0, 1, 2, 3 and latin indices stand for i, j = 1, 2, 3. Our Fourier convention is

Rk =

∫
d3xR(x)e−ik·x ,

so that the power spectrum is

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) , ∆2
R(k) ≡ k3

2π2
PR(k) .

For conformal time we use the letter τ (and caution the reader not confuse it with the astrophysical

parameter for optical depth). We reserve the letter η for the second slow-roll parameter. Derivatives

with respect to physical time are denoted by overdots, while derivatives with respect to conformal

time are indicated by primes. Partial derivatives are denoted by commas, covariant derivatives by

semi-colons.
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Part II

Lecture 1: Classical Dynamics of

Inflation

Abstract

The aim of this lecture is a first-principles introduction to the classical dynamics of

inflationary cosmology. After a brief review of basic FRW cosmology we show that

the conventional Big Bang theory leads to an initial conditions problem: the universe

as we know it can only arise for very special and finely-tuned initial conditions. We

then explain how inflation (an early period of accelerated expansion) solves this initial

conditions problem and allows our universe to arise from generic initial conditions. We

describe the necessary conditions for inflation and explain how inflation modifies the

causal structure of spacetime to solve the Big Bang puzzles. Finally, we end this lecture

with a discussion of the physical origin of the inflationary expansion.

3 Review: The Homogeneous Universe

To set the stage, we review basic aspects of the homogeneous universe. Since this material was

covered in Prof. Turner’s lectures at TASI 2009 and is part of any textbook treatment of cosmology

(e.g. [8–10]), we will be brief and recall many of the concepts via exercises for the reader. We will

naturally focus on the elements most relevant for the study of inflation.

3.1 FRW Spacetime

Cosmology describes the structure and evolution of the universe on the largest scales. Assuming

homogeneity and isotropy1 on large scales one is lead to the Friedmann-Robertson-Walker (FRW)

metric for the spacetime of the universe (see Problem 1):

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (1)

Here, the scale factor a(t) characterizes the relative size of spacelike hypersurfaces Σ at different

times. The curvature parameter k is +1 for positively curved Σ, 0 for flat Σ, and −1 for negatively

curved Σ. Eqn. (1) uses comoving coordinates – the universe expands as a(t) increases, but galax-

ies/observers keep fixed coordinates r, θ, φ as long as there aren’t any forces acting on them, i.e. in

1A homogeneous space is one which is translation invariant, or the same at every point. An isotropic

space is one which is rotationally invariant, or the same in every direction. A space which is everywhere

isotropic is necessarily homogeneous, but the converse is not true; e.g. a space with a uniform electric field is

translationally invariant but not rotationally invariant.
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the absence of peculiar motion. The corresponding physical distance is obtained by multiplying with

the scale factor, R = a(t)r, and is time-dependent even for objects with vanishing peculiar velocities.

By a coordinate transformation the metric (1) may be written as

ds2 = −dt2 + a2(t)
(
dχ2 + Φk(χ

2)(dθ2 + sin2 θdφ2)
)
, (2)

where

r2 = Φk(χ
2) ≡


sinh2 χ

χ2

sin2 χ

k = −1

k = 0

k = +1

. (3)

For the FRW ansatz the evolution of the homogeneous universe boils down to the single function

a(t). Its form is dictated by the matter content of the universe via the Einstein field equations (see

§3.3). An important quantity characterizing the FRW spacetime is the expansion rate

H ≡ ȧ

a
. (4)

The Hubble parameter H has unit of inverse time and is positive for an expanding universe (and

negative for a collapsing universe). It sets the fundamental scale of the FRW spacetime, i.e. the

characteristic time-scale of the homogeneous universe is the Hubble time, t ∼ H−1, and the charac-

teristic length-scale is the Hubble length, d ∼ H−1 (in units where c = 1). The Hubble scale sets the

scale for the age of the universe, while the Hubble length sets the size of the observable universe.

3.2 Kinematics: Conformal Time and Horizons

Having defined the metric for the average spacetime of the universe we can now study kinematical

properties of the propagation of light and matter particles.

Conformal Time and Null Geodesics

The causal structure of the universe is determined by the propagation of light in the FRW spacetime

(1). Massless photons follows null geodesics, ds2 = 0. These photon trajectories are studied most

easily if we define conformal time2

τ =

∫
dt

a(t)
, (5)

for which the FRW metric becomes

ds2 = a(τ)2
[
−dτ2 +

(
dχ2 + Φk(χ

2)(dθ2 + sin2 θdφ2)
)]
. (6)

In an isotropic universe we may consider radial propagation of light as determined by the two-

dimensional line element

ds2 = a(τ)2
[
−dτ2 + dχ2

]
. (7)

2Conformal time may be interpreted as a “clock” which slows down with the expansion of the universe.
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The metric has factorized into a static Minkowski metric multiplied by a time-dependent conformal

factor a(τ). Expressed in conformal time the radial null geodesics of light in the FRW spacetime

therefore satisfy

χ(τ) = ±τ + const. , (8)

i.e. they correspond to straight lines at angles ±45◦ in the τ–χ plane (see Fig. 3). If instead we had

used physical time t to study light propagation, then the light cones for curved spacetimes would be

curved.

Event
P

Future Light Cone

Past Light Cone

Time

Space

causally-disconnected

Q

Figure 3: Light cones and causality. Photons travel along world lines of zero proper time, ds2 = 0,

called null geodesics. Massive particles travel along world lines with real proper time,

ds2 > 0, called timelike geodescis. Causally disconnected regions of spacetime are sep-

arated by spacelike intervals, ds2 < 0. The set of all null geodesics passing through a

given point (or event) in spacetime is called the light cone. The interior of the light cone,

consisting of all null and timelike geodesics, defined the region of spacetime causally

related to that event.

Particle Horizon

The maximum comoving distance light can propagate between an initial time ti and some later time

t is

χp(τ) = τ − τi =

∫ t

ti

dt

a(t)
. (9)

This is called the (comoving) particle horizon. The initial time ti is often taken to be the ‘origin

of the universe’, ti ≡ 0, defined by the initial singularity, a(ti ≡ 0) ≡ 0.3 The physical size of the

particle horizon is

dp(t) = a(t)χp . (10)

The particle horizon is of crucial importance to understanding the causal structure of the universe

and it will be fundamental to our discussion of inflation. As we will see, the conventional Big Bang

3Whether ti = 0 also corresponds to τi = 0 depends on the evolution of the scale factor a(t); e.g. for

inflation ti = 0 will not be τi = 0.
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model ‘begins’ at a finite time in the past and at any time in the past the particle horizon was finite,

limiting the distance over which spacetime region could have been in causal contact. This feature is

at the heart of the ‘Big Bang puzzles’.

Event Horizon

An event horizon defines the set of points from which signals sent at a given moment of time τ will

never be received by an observer in the future. In comoving coordinates these points satisfy

χ > χe =

∫ τmax

τ
dτ = τmax − τ , (11)

where τmax denotes the ‘final moment of time’ (this might be infinite or finite). The physical size of

the event horizon is

de(t) = a(t)χe . (12)

Angular Diameter and Luminosity Distances

Conformal time (or comoving distance) relates in a simple way to angular diameter and luminosity

distances which are important for the discussion of CMB anisotropies and supernova distances,

respectively. These details won’t concern us here, but may be found in the standard books [8–10].

3.3 Dynamics: Einstein Equations

The dynamics of the universe as characterized by the evolution of the scale factor of the FRW

spacetime a(t) is determined by the Einstein Equations

Gµν = 8πGTµν . (13)

We will often work in units where 8πG ≡ 1.

Einstein Gravity

For convenience we here recall the definition of the Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR , (14)

in terms of the Ricci tensor Rµν and the Ricci scalar R,

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα , R ≡ gµνRµν , (15)

where

Γµαβ ≡
gµν

2
[gαν,β + gβν,α − gαβ,ν ] . (16)

Commas denote partial derivatives, e.g. (. . . ),µ = ∂(... )
∂xµ . We will continue to follow this notation in

the rest of these lectures.

18



Energy, Momentum and Pressure

To define the energy-momentum tensor of the universe, Tµν , we introduce a set of observers whose

worldlines are tangent to the timelike velocity 4-vector

uµ ≡ dxµ

dτ
, (17)

where τ is the proper time of the observers, so that gµνu
µuν = −1. We define the tensor γµν ≡

gµν + uµuν as the metric of the 3-dimensional spatial sections orthogonal to uµ. We use γµν to

project quantities orthogonal to the 4-velocity into the observers’ instantaneous rest space. The

energy-momentum tensor of a general (imperfect) fluid can then be written as

Tµν = ρuµuν + pγµν + 2q(µuν) + Σµν , (18)

where ρ = Tµνu
µuν is the matter energy density, p = 1

3Tµνγ
µν is the isotropic pressure, qµ =

−γ α
µ Tαβu

β is the energy-flux vector, and Σµν = γ α
〈µ γ

β
ν〉 Tαβ is the symmetric and trace-free anisotropic

stress tensor.4 For a perfect fluid there exists a unique 4-velocity so that qµ = Σµν = 0, i.e. for the

case of a perfect fluid the stress-energy tensor is

Tµν = gµαTαν = (ρ+ p)uµuν − p δµν , (19)

where ρ and p are the proper energy density and pressure in the fluid rest frame and uµ is the

4-velocity of the fluid. In a frame that is comoving with the fluid we may choose uµ = (1, 0, 0, 0),

i.e.

Tµν =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 . (20)

The Einstein Equations then take the form of two coupled, non-linear ordinary differential equations,

also called the the Friedmann Equations (see Problem 3)

H2 ≡
(
ȧ

a

)2

=
1

3
ρ− k

a2
, (21)

and

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p) , (22)

where overdots denote derivatives with respect to physical time t. Notice, that in an expanding

universe (i.e. ȧ > 0) filled with ordinary matter (i.e. matter satisfying the strong energy condition:

ρ + 3p ≥ 0) Eqn. (22) implies ä < 0. This indicates the existence of a singularity in the finite

past: a(t ≡ 0) = 0. Of course, this conclusion relies on the assumption that General Relativity

and the Friedmann Equations are applicable up to arbitrary high energies and that no exotic forms

of matter become relevant at high energies. More likely the singularity signals the breakdown of

General Relativity.

4Here we use the notation t〈µν〉 = γ α
(µ γ

β
ν) tαβ − 1

3γ
αβtαβγµν and t(µν) = 1

2 (tµν + tνµ).
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Eqns. (21) and (22) may be combined into the continuity equation

dρ

dt
+ 3H(ρ+ p) = 0 . (23)

This may also be written as
d ln ρ

d ln a
= −3(1 + w) , (24)

if we define the equation of state parameter

w ≡ p

ρ
. (25)

Eqn. (24) may be integrated to give

ρ ∝ a−3(1+w) . (26)

Together with the Friedmann Equation (21) this leads to the time evolution of the scale factor

a(t) ∝
{
t2/3(1+w) w 6= −1 ,

eHt w = −1 ,
(27)

i.e. a(t) ∝ t2/3, a(t) ∝ t1/2 and a(t) ∝ exp(Ht), for the scale factor of a flat (k = 0) universe

dominated by non-relativistic matter (w = 0), radiation or relativistic matter (w = 1
3) and a

cosmological constant (w = −1), respectively.

Table 2: FRW solutions for a flat universe dominated by radiation, matter or a cosmological con-

stant.

w ρ(a) a(t) a(τ) τi

MD 0 a−3 t2/3 τ 2 0

RD 1
3

a−4 t1/2 τ 0

Λ −1 a0 eHt −τ−1 −∞

If more than one matter species (baryons, photons, neutrinos, dark matter, dark energy, etc.)

contributes significantly to the energy density and the pressure, ρ and p refer to the sum of all

components

ρ ≡
∑
i

ρi , p ≡
∑
i

pi . (28)

For each species ‘i’ we define the present ratio of the energy density relative to the critical energy

density ρcrit ≡ 3H2
0

Ωi ≡
ρi0
ρcrit

, (29)

and the corresponding equations of state

wi ≡
pi
ρi
. (30)
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Here and in the following the subscript ‘0’ denotes evaluation of a quantity at the present time t0.

We normalize the scale factor such that a0 = a(t0) ≡ 1. This allows us to write the Friedmann

Equation (21) as (
H

H0

)2

=
∑
i

Ωia
−3(1+wi) + Ωka

−2, (31)

with Ωk ≡ −k/a2
0H

2
0 parameterizing curvature. Evaluating Eqn. (31) today implies the consistency

relation ∑
i

Ωi + Ωk = 1 . (32)

The second Friedmann Equation (22) evaluated at t = t0 becomes

1

a0H2
0

d2a0

dt2
= −1

2

∑
i

Ωi(1 + 3wi). (33)

This defines the condition for accelerated expansion today.

3.4 The Concordance Model

Figure 4: A combination CMB and LSS observations indicate that the spatial geometry of the

universe is flat [11]. Note that the evidence for flatness cannot be obtained from CMB

observations alone.

Observations of the cosmic microwave background and the large-scale structure find that the

universe is flat (see Fig. 4)

Ωk ∼ 0 , (34)

and composed of 4% atoms (or baryons, ‘b’), 23% (cold) dark matter (‘dm’) and 73% dark energy

(Λ) (see Fig. 5):

Ωb = 0.04 , Ωdm = 0.23 , ΩΛ = 0.72 , (35)

with wΛ ≈ −1 (see Fig. 6).

It is also found that the universe has tiny ripples of adiabatic, scale-invariant, Gaussian density

fluctuations. In the bulk of this lecture series I will describe how quantum fluctuations during

inflation can explain the observed cosmological perturbations.
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Figure 5: Evidence for dark energy. Shown are a combination of observations of the cosmic mi-

crowave background (CMB), supernovae (SNe) and baryon acoustic oscillations (BAO)

[12].

Figure 6: The properties of dark energy are close to a cosmological constant, wΛ ≈ −1 [11].

4 Big Bang Puzzles

It is somewhat of a philosophical questions whether initial conditions form part of a physical theory or

should be considered separately. The purpose of physics is to predict the future evolution of a system

given a set of initial conditions; e.g. Newton’s laws of gravity will predict the path of a projectile if

we define its initial position and velocity. It is therefore far from clear whether cosmology should

predict or even just explain the initial conditions of the universe. On the other hand, it would be

very disappointing if only very special and finely-tuned initial conditions would lead to the universe

as we see it, making the observed universe an ‘improbable accident’.

22



In this section we will explain that the conventional Big Bang theory requires precisely such a

fine-tuned set of initial conditions to allow the universe to evolve to its current state. One of the

major achievements of inflation is that it explains the initial conditions of the universe. Via inflation,

the universe we know and love grew out of generic initial conditions.

4.1 The Cauchy Problem of the Universe

To specify the initial condition of the universe we consider a spatial slice of constant time Σ (we

here won’t worry about the gauge-dependence of the choice of Σ). On the 3-surface Σ we define the

positions and velocities of all matter particles. The laws of gravity and fluid dynamics are then used

to evolve the system forward in time.

• Initial Homogeneity

We describe the spatial distribution of matter by its density and pressure as a function of

coordinates x, i.e. ρ(x) and p(x). In the previous section we assumed homogeneity and

isotropy of the universe. Why is this a good assumption? Inhomogeneities are gravitationally

unstable and therefore grow with time. Observations of the cosmic microwave background

show that the inhomogeneities were much smaller in the past (at last-scattering) than today.

One thus expects that these inhomogeneities were even smaller at yet earlier times. How do

we explain the smoothness of the early universe?

This is particularly surprising since we will show in §4.2 that in the conventional Big Bang

picture the early universe (e.g. the CMB at last-scattering) consisted of a large number of

causally-disconnected regions of space. In the Big Bang theory, there is no dynamical reason

to explain why these causally-separated patches show such similar physical conditions. The

homogeneity problem is therefore often called the horizon problem.

• Initial Velocities

In addition to specifying the initial density distribution, the complete characterization of the

Cauchy problem of the universe requires the fluid velocities at every point in space. As we will

see, to ensure that the universe remains homogeneous at late times requires the initial fluid

velocities to take very precise values. If the initial velocities are just slightly too small, the

universe recollapses within a fraction of a second. If they are just slightly too big, the universe

expands too rapidly and quickly becomes nearly empty. The fine-tuning of initial velocities

is made more dramatic by considering it in combination with the horizon problem. The fluid

velocities need to be fine-tuned across causally-separated regions of space.

Since the difference between the potential energy and the kinetic energy defines the local

curvature of a region of space (see Exercise 1), this fine-tuning of initial velocities is often

called the flatness problem.

23



4.2 Horizon Problem

In the previous section, we defined the comoving (particle) horizon, τ , as the causal horizon or the

maximum distance a light ray can travel between time 0 and time t

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

Ha2
=

∫ a

0
d ln a

(
1

aH

)
. (36)

Here, we have expressed the comoving horizon as an integral of the comoving Hubble radius, (aH)−1,

which plays a crucial role in inflation.

For a universe dominated by a fluid with equation of state w, we have

(aH)−1 = H−1
0 a

1
2

(1+3w) . (37)

Notice the dependence of the exponent on the combination (1 + 3w). The qualitative behavior

therefore depends on whether (1 + 3w) is positive or negative. During the conventional Big Bang

expansion (w & 0) (aH)−1 grows monotonically and the comoving horizon τ or the fraction of the

universe in causal contact increases with time

τ ∝ a 1
2

(1+3w) . (38)

Again, the qualitative behavior depends on whether (1 + 3w) is positive of negative. In particular,

for radiation-dominated (RD) and matter-dominated (MD) universes we find

τ =

∫ a

0

da

Ha2
∝
{
a RD

a1/2 MD
. (39)

This means that the comoving horizon grows monotonically with time which implies that comoving

scales entering the horizon today have been far outside the horizon at CMB decoupling.5 But the

near-homogeneity of the CMB tells us that the universe was extremely homogeneous at the time of

last-scattering on scales encompassing many regions that a priori are causally independent. How is

this possible?

4.3 Flatness Problem

Exercise 1 (Flatness and Kinetic Energy) Show that the curvature parameter

Ωk ≡ Ω− 1 =
ρ− ρcrit

ρcrit
, where ρcrit ≡ 3H2 ,

may be interpreted as the difference between the average potential energy and the average kinetic

energy of a region of space.

Spacetime in General Relativity is dynamical, curving in response to matter in the universe.

Why then is the universe so closely approximated by flat Euclidean space? To quantify the problem

we consider the Friedmann Equation

H2 =
1

3
ρ(a)− k

a2
, (40)

5Recall that the comoving wavelength of a fluctuations is time-independent, while the comoving Hubble

radius is time-dependent.
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written as

1− Ω(a) =
−k

(aH)2
, (41)

where

Ω(a) ≡ ρ(a)

ρcrit(a)
, ρcrit(a) ≡ 3H(a)2 . (42)

Notice that Ω(a) is now defined to be time-dependent, whereas the Ω’s in the previous sections were

constants, Ω(a0). In standard cosmology the comoving Hubble radius, (aH)−1, grows with time and

from Eqn. (41) the quantity |Ω − 1| must thus diverge with time. The critical value Ω = 1 is an

unstable fixed point. Therefore, in standard Big Bang cosmology without inflation, the near-flatness

observed today, Ω(a0) ∼ 1, requires an extreme fine-tuning of Ω close to 1 in the early universe.

More specifically, one finds that the deviation from flatness at Big Bang Nucleosynthesis (BBN),

during the GUT era and at the Planck scale, respectively has to satisfy the following conditions

|Ω(aBBN)− 1| ≤ O(10−16) , (43)

|Ω(aGUT)− 1| ≤ O(10−55) , (44)

|Ω(apl)− 1| ≤ O(10−61) . (45)

Another way of understanding the flatness problem is from the following differential equation

dΩ

d ln a
= (1 + 3w)Ω(Ω− 1) . (46)

Eqn. (46) is derived by differentiating Eqn. (41) and using the continuity equation (24). This makes

it apparent that Ω = 1 is an unstable fixed point if the strong energy condition is satisfied

d|Ω− 1|
d ln a

> 0 ⇔ 1 + 3w > 0 . (47)

Again, why is Ω(a0) ∼ O(1) and not much smaller or much larger?

4.4 On the Problem of Initial Conditions

We should emphasize that the flatness and horizon problems are not strict inconsistencies in the

standard cosmological model. If one assumes that the initial value of Ω was extremely close to

unity and that the universe began homogeneously over superhorizon distances (but with just the

right level of inhomogeneity to explain structure formation) then the universe will continue to evolve

homogeneously in agreement with observations. The flatness and horizon problems are therefore

really just severe shortcomings in the predictive power of the Big Bang model. The dramatic flatness

of the early universe cannot be predicted by the standard model, but must instead be assumed in

the initial conditions. Likewise, the striking large-scale homogeneity of the universe is not explained

or predicted by the model, but instead must simply be assumed. A theory that explains these initial

conditions dynamically seems very attractive.
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5 A First Look at Inflation

5.1 The Shrinking Hubble Sphere

In §4.2 and §4.3 we emphasized the fundamental role of the comoving Hubble radius, (aH)−1, in

the horizon and flatness problems of the standard Big Bang cosmology. Both problems arise since

in the conventional cosmology the comoving Hubble radius is strictly increasing. This suggest that

all the Big Bang puzzles are solved by a beautifully simple idea: invert the behavior of the comoving

Hubble radius, i.e. make is decrease sufficiently in the very early universe.

5.1.1 Comoving Horizon during Inflation

The evolution of the comoving horizon is of such crucial importance to the whole idea of inflation

that it is worth being explicit about a few important points.

Recall the definition of the comoving horizon (= conformal time) as a logarithmic integral of the

comoving Hubble radius

τ =

∫ a

0
d ln a′

1

a′H(a′)
. (48)

Let us emphasize a subtle distinction between the comoving horizon τ and the comoving Hubble

radius (aH)−1 [8]:

If particles are separated by distances greater than τ , they never could have communi-

cated with one another; if they are separated by distances greater than (aH)−1, they

cannot talk to each other now! This distinction is crucial for the solution to the horizon

problem which relies on the following: It is possible that τ is much larger than (aH)−1

now, so that particles cannot communicate today but were in causal contact early on.

From Eqn. (48) we see that this might happen if the comoving Hubble radius in the

early universe was much larger than it is now so that τ got most of its contribution

from early times. Hence, we require a phase of decreasing Hubble radius. Since H is

approximately constant while a grows exponentially during inflation we find that the

comoving Hubble radius decreases during inflation just as advertised.

Besides solving the Big Bang puzzles the decreasing comoving horizon during inflation is the

key feature required for the quantum generation of cosmological perturbations described in the sec-

ond lecture. I will describe how quantum fluctuations are generated on subhorizon scales, but exit

the horizon once the Hubble radius becomes smaller than their comoving wavelength. In physical

coordinates this corresponds to the superluminal expansion stretching perturbations to acausal dis-

tances. They become classical superhorizon density perturbations which re-enter the horizon in the

subsequent Big Bang evolution and then gravitationally collapse to form the large-scale structure in

the universe.

With this understanding of how the comoving horizon and the comoving Hubble radius evolve

during inflation it is now almost trivial to explain how inflation solves the Big Bang puzzles.
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5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1− Ω(a)| = 1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution Ω = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)−1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ∼ 10−5. However, at sufficiently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

(
H−1

a

)
< 0 ⇒ d2a

dt2
> 0 ⇒ ρ+ 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:
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• Decreasing comoving horizon

The shrinking Hubble sphere is defined as

d

dt

(
1

aH

)
< 0 . (51)

We used this as our fundamental definition of inflation since it most directly relates to the

flatness and horizon problems and is key for the mechanism to generate fluctuations.

• Accelerated expansion

From the relation
d

dt
(aH)−1 =

−ä
(aH)2

, (52)

we see immediately that a shrinking comoving Hubble radius implies accelerated expansion

d2a

dt2
> 0 . (53)

This explains why inflation is often defined as a period of accelerated expansion. The second

time derivative of the scale factor may of course be related to the first time derivative of the

Hubble parameter H
ä

a
= H2(1− ε) , where ε ≡ − Ḣ

H2
. (54)

Acceleration therefore corresponds to

ε = − Ḣ

H2
= −d lnH

dN
< 1 (55)

Here, we have defined dN = Hdt = d ln a, which measures the number of e-folds N of

inflationary expansion. Eqn. (55) therefore means that the fractional change of the Hubble

parameter per e-fold is small.

• Negative pressure

What stress-energy can source acceleration? Consulting Eqn. (22) we infer that ä > 0 requires

p < −1

3
ρ , (56)

i.e. negative pressure or a violation of the strong energy condition (SEC). How this can arise

in a physical theory will be explained in §6.2. We will see that there is nothing sacred about

the SEC and it can easily be violated.

5.3 Conformal Diagram of Inflation

A truly illuminating way of visualizing inflation is with the aid of a conformal spacetime diagram.

Recall from §3 the flat FRW metric in conformal time dτ = dt/a(t)

ds2 = a2(τ)
[
−dτ2 + dx2

]
. (57)
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Figure 8: Conformal diagram of Big Bang cosmology. The CMB at last-scattering (recombination)

consists of 105 causally disconnected regions!

Also recall that in conformal coordinates null geodesics (ds2 = 0) are always at 45◦ angles, dτ =

±
√

dx2 ≡ ±dr. Since light determines the causal structure of spacetime this provides a nice way to

study horizons in inflationary cosmology.

During matter or radiation domination the scale factor evolves as

a(τ) ∝
{
τ RD

τ2 MD
. (58)

If and only if the universe had always been dominated by matter or radiation, this would imply the

existence of the Big Bang singularity at τi = 0

a(τi ≡ 0) = 0 . (59)

The conformal diagram corresponding to standard Big Bang cosmology is given in Figure 8. The

horizon problem is apparent. Each spacetime point in the conformal diagram has an associated past

light cone which defines its causal past. Two points on a given τ = constant surface are in causal

contact if their past light cones intersect at the Big Bang, τi = 0. This means that the surface

of last-scattering (τCMB) consisted of many causally disconnected regions that won’t be in thermal

equilibrium. The uniformity of the CMB on large scales hence becomes a serious puzzle.

During inflation (H ≈ const.), the scale factor is

a(τ) = − 1

Hτ
, (60)

and the singularity, a = 0, is pushed to the infinite past, τi → −∞. The scale factor (60) becomes

infinite at τ = 0! This is because we have assumed de Sitter space with H = const., which means

that inflation will continue forever with τ = 0 corresponding to the infinite future t → +∞. In
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Figure 9: Conformal diagram of inflationary cosmology. Inflation extends conformal time to neg-

ative values! The end of inflation creates an “apparent” Big Bang at τ = 0. There

is, however, no singularity at τ = 0 and the light cones intersect at an earlier time if

inflation lasts for at least 60 e-folds.
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reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface τ = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time τ � 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (φ), dominates over its kinetic energy, 1
2 φ̇

2. Inflation ends at φend when the

kinetic energy has grown to become comparable to the potential energy, 1
2 φ̇

2 ≈ V . CMB

fluctuations are created by quantum fluctuations δφ about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field φ, the inflaton. Here, we don’t

specify the physical nature of the field φ, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

∫
d4x
√−g

[
1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
= SEH + Sφ . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, Sφ. The potential V (φ) describes the self-interactions of the
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scalar field. The energy-momentum tensor for the scalar field is

T (φ)
µν ≡ −

2√−g
δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ+ V (φ)

)
. (62)

The field equation of motion is

δSφ
δφ

=
1√−g∂µ(

√−g∂µφ) + V,φ = 0 , (63)

where V,φ = dV
dφ . Assuming the FRW metric (1) for gµν and restricting to the case of a homogeneous

field φ(t,x) ≡ φ(t), the scalar energy-momentum tensor takes the form of a perfect fluid (20) with

ρφ =
1

2
φ̇2 + V (φ) , (64)

pφ =
1

2
φ̇2 − V (φ) . (65)

The resulting equation of state

wφ ≡
pφ
ρφ

=
1
2 φ̇

2 − V
1
2 φ̇

2 + V
, (66)

shows that a scalar field can lead to negative pressure (wφ < 0) and accelerated expansion (wφ <

−1/3) if the potential energy V dominates over the kinetic energy 1
2 φ̇

2. The dynamics of the

(homogeneous) scalar field and the FRW geometry is determined by

φ̈+ 3Hφ̇+ V,φ = 0 and H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (67)

For large values of the potential, the field experiences significant Hubble friction from the term Hφ̇.

6.2 Slow-Roll Inflation

The acceleration equation for a universe dominated by a homogeneous scalar field can be written as

follows
ä

a
= −1

6
(ρφ + 3pφ) = H2(1− ε) , (68)

where

ε ≡ 3

2
(wφ + 1) =

1

2

φ̇2

H2
. (69)

The so-called slow-roll parameter ε may be related to the evolution of the Hubble parameter

ε = − Ḣ

H2
= −d lnH

dN
, (70)

where dN = Hdt. Accelerated expansion occurs if ε < 1. The de Sitter limit, pφ → −ρφ, corresponds

to ε→ 0. In this case, the potential energy dominates over the kinetic energy

φ̇2 � V (φ) . (71)
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Accelerated expansion will only be sustained for a sufficiently long period of time if the second time

derivative of φ is small enough

|φ̈| � |3Hφ̇| , |V,φ| . (72)

This requires smallness of a second slow-roll parameter

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN
, (73)

where |η| < 1 ensures that the fractional change of ε per e-fold is small. The slow-roll conditions,

ε, |η| < 1, may also be expressed as conditions on the shape of the inflationary potential

εv(φ) ≡
M2

pl

2

(
V,φ
V

)2

, (74)

and

ηv(φ) ≡M2
pl

V,φφ
V

. (75)

Here, we temporarily reintroduced the Planck mass to make εv and ηv manifestly dimensionless. In

the following we will set Mpl to one again. In the slow-roll regime

εv, |ηv| � 1 , (76)

the background evolution is

H2 ≈ 1

3
V (φ) ≈ const. , (77)

φ̇ ≈ −V,φ
3H

, (78)

and the spacetime is approximately de Sitter

a(t) ∼ eHt . (79)

The parameters εv and ηv are called the potential slow-roll parameters to distinguish them from

the Hubble slow-roll parameters ε and η. In the slow-roll approximation the Hubble and potential

slow-roll parameters are related as follows (see Appendix D)

ε ≈ εv , η ≈ ηv − εv . (80)

Inflation ends when the slow-roll conditions are violated

ε(φend) ≡ 1 , εv(φend) ≈ 1 . (81)

The number of e-folds before inflation ends is

N(φ) ≡ ln
aend

a

=

∫ tend

t
Hdt =

∫ φend

φ

H

φ̇
dφ ≈

∫ φ

φend

V

V,φ
dφ , (82)
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where we used the slow-roll results (77) and (78). The result (82) may also be written as

N(φ) =

∫ φ

φend

dφ√
2ε
≈
∫ φ

φend

dφ√
2εv

. (83)

To solve the horizon and flatness problems requires that the total number of inflationary e-folds

exceeds about 60,

Ntot ≡ ln
aend

astart
& 60 . (84)

The precise value depends on the energy scale of inflation and on the details of reheating after

inflation. The fluctuations observed in the CMB are created Ncmb ≈ 40− 60 e-folds before the end

of inflation (the precise value again depending on the details of reheating and the post-inflationary

thermal history of the universe). The following integral constraint gives the corresponding field value

φcmb ∫ φcmb

φend

dφ√
2εv

= Ncmb ≈ 40− 60 . (85)

6.3 Case Study: m2φ2 Inflation

As an example, let us give the slow-roll analysis of arguably the simplest model of inflation: single

field inflation driven by a mass term

V (φ) =
1

2
m2φ2 . (86)

The slow-roll parameters are

εv(φ) = ηv(φ) = 2

(
Mpl

φ

)2

. (87)

To satisfy the slow-roll conditions εv, |ηv| < 1, we need to consider super-Planckian values for the

inflaton

φ >
√

2Mpl ≡ φend . (88)

The relation between the inflaton field value and the number of e-folds before the end of inflation is

N(φ) =
φ2

4M2
pl

− 1

2
. (89)

Fluctuations observed in the CMB are created at

φcmb = 2
√
NcmbMpl ∼ 15Mpl . (90)

In the next lecture we will come back to this example when we compute the fluctuation spectrum

generate by m2φ2 inflation.

Exercise 2 (m2φ2 Inflation) Verify the above slow-roll results for m2φ2 inflation.
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6.4 Reheating

After inflation ends the scalar field begins to oscillate around the minimum of the potential. During

this phase of coherent oscillations the scalar field acts like pressureless matter

dρ̄φ
dt

+ 3Hρ̄φ = 0 . (91)

Exercise 3 (Coherent Scalar Field Oscillations) Confirm Eqn. (91) from the equations of mo-

tion for φ.

The coupling of the inflaton field to other particles leads to a decay of the inflaton energy

dρ̄φ
dt

+ (3H + Γφ)ρ̄φ = 0 . (92)

The coupling parameter Γφ depends on complicated and model-dependent physical processes that

we do not have the time to review. Eventually, the inflationary energy density is converted into

standard model degrees of freedom and the hot Big Bang commences.

Reheating is a rich and complicated subject to which we couldn’t do justice to in these lectures.

We refer the interested reader to the review by Bassett et al. [13] for more details.

6.5 Models of Inflation

The fundamental microscopic origin of inflation is still a mystery. Basic questions like: what is

the inflaton? what is the shape of the inflationary potential? and why did the universe start

in a high energy state? remain unanswered. The challenge to explain the physics of inflation

is considerable. Inflation is believed to have occurred at an enormous energy scale (maybe as

high as ∼ 1015 GeV), far out of reach of terrestrial particle accelerators. Any description of the

inflationary era therefore requires a considerable extrapolation of the known laws of physics, and

until recently, only a phenomenological parameterization of the inflationary dynamics was possible.6

In this approach, a suitable inflationary potential function V (φ) is postulated (see Figures 10 and

11 for two popular examples) and the experimental predictions are computed from that. As we will

see in the next lecture, details of the primordial fluctuation spectra will depend on the precise shape

of the inflaton potential.

6.5.1 Single-Field Slow-Roll Inflation

The definition of an inflationary model amounts to a specification of the inflaton action (potential

and kinetic terms) and its coupling to gravity. So far we have phrased our discussion of inflation in

terms of the simplest models, single-field slow-roll inflation, characterized by the following action

S =

∫
d4x
√−g

[
1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
. (93)

The dynamics of the inflaton field, from the time when CMB fluctuations were created (see Lecture

2) at φcmb to the end of inflation at φend, is determined by the shape of the inflationary potential

6Recently, progress has been made both in a systematic effective field theory description of inflation [14, 15]

and in top-down derivations of inflationary potentials from string theory [16].
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V (φ). The different possibilities for V (φ) can be classified in a useful way by determining whether

they allow the inflaton field to move over a large or small distance ∆φ ≡ φcmb − φend, as measured

in Planck units.

Figure 11: Large-field inflation. In an important class of inflationary models the inflationary dy-

namics is driven by a single monomial term in the potential, V (φ) ∝ φp. In these models

the inflaton field evolves over a super-Planckian range during inflation, ∆φ > Mpl, and a

large amplitude of gravitational waves is produced by quantum mechanical fluctuations

(see Lecture 2).

1. Small-Field Inflation

In small-field models the field moves over a small (sub-Planckian) distance: ∆φ < Mpl. This

is relevant for future observations because small-field models predict that the amplitude of the

gravitational waves produced during inflation is too small to be detected (see Lecture 2). The

potentials that give rise to such small-field evolution often arise in mechanisms of spontaneous

symmetry breaking, where the field rolls off an unstable equilibrium toward a displaced vacuum

(see Fig. 10). A simple example is the Higgs-like potential

V (φ) = V0

[
1−

(
φ

µ

)2
]2

. (94)

More generally, small-field models can be locally approximated by the following expansion

V (φ) = V0

[
1−

(
φ

µ

)p]
+ · · · , (95)

where the dots represent higher-order terms that become important near the end of inflation

and during reheating.

Historically, a famous inflationary potential is the Coleman-Weinberg potential [2, 3]

V (φ) = V0

[(
φ

µ

)4(
ln

(
φ

µ

)
− 1

4

)
+

1

4

]
, (96)

which arises as the potential for radiatively-induced symmetry breaking in electroweak and

grand unified theories. Although the original values of the parameters V0 and µ based on

the SU(5) theory are incompatible with the small amplitude of inflationary fluctuations, the

Coleman-Weinberg potential remains a popular phenomenological model (see e.g. [17]).
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2. Large-Field Inflation

In large-field models the inflaton field starts a large field values and then evolves to a minimum

at the origin φ = 0. If the field evolution is super-Planckian, ∆φ > Mpl, the gravitational

waves produced by inflation should be observed in the near future.

The prototypical large-field model is chaotic inflation where a single monomial term dominates

the potential (see Fig. 11)

V (φ) = λpφ
p . (97)

For such a potential the slow-roll parameters are small for super-Planckian field values,

φ � Mpl (notice that the slow-roll conditions are independent of the coupling constant λp).

However, to arrange for a small amplitude of density fluctuations (see Lecture 2) the inflaton

self-coupling has to be very small, λp � 1. This condition automatically guarantees that the

potential energy (density) is sub-Planckian, V � M4
pl, and quantum gravity effects are not

necessarily important (but see §28 in Lecture 5).

One of the most elegant inflationary models is natural inflation where the potential takes the

following form (see Fig. 12)

V (φ) = V0

[
cos

(
φ

f

)
+ 1

]
. (98)

This potential often arises if the inflaton field is taken to be an axion. Depending on the

parameter f the model can be of the small-field or large-field type. However, it is particularly

attractive to consider natural inflation for large-field variations, 2πf > Mpl, since for axions

a shift symmetry can be employed to protect the potential from correction terms even over

large field ranges (see §28).

2πf0

Figure 12: Natural Inflation. If the periodicity 2πf is super-Planckian the model can naturally

support a large gravitational wave amplitude.

6.5.2 Beyond Single-Field Slow-Roll

The possibilities for getting inflationary expansion are (maybe frustratingly) varied. Inflation is a

paradigm, a framework for a theory of the early universe, but it is not a unique theory. A large

number of phenomenological models has been proposed with different theoretical motivations and

observational predictions. For the majority of these lectures we will focus on the simplest single-

field slow-roll models that we just described. However, in this short section we want to relieve

37



ourselves from the sin of not mentioning the broader landscape of inflationary model-building (see

also Ref. [18]).

The simplest inflationary actions (93) may be extended in a number of obvious ways:

1. Non-minimal coupling to gravity.

The action (93) is called minimally coupled in the sense that there is no direct coupling

between the inflaton field and the metric. In principle, we could imagine a non-minimal

coupling between the inflaton and the graviton, however, in practice, non-minimally coupled

theories can be written as minimally coupled theories by a field redefinition.

2. Modified gravity.

Similarly, we could entertain the possibility that the Einstein-Hilbert part of the action is

modified at high energies. However, the simplest examples for this UV modification of gravity,

so-called f(R) theories, can again be transformed into a minimally coupled scalar field with

potential V (φ).

3. Non-canonical kinetic term.

The action (93) has a canonical kinetic term

Lφ = X − V (φ) , X ≡ 1

2
gµν∂µφ∂νφ . (99)

Inflation can then only occur if the potential V (φ) is very flat. More generally, however, we

could imagine that the high-energy theory has fields with non-canonical kinetic terms

Lφ = F (φ,X)− V (φ) , (100)

where F (φ,X) is some function of the inflaton field and its derivatives. For actions such as

(100) it is possible that inflation is driven by the kinetic term and occurs even in the presence

of a steep potential.

4. More than one field.

If we allow more than one field to be dynamically relevant during inflation, then the possibilities

for the inflationary dynamics (and the mechanisms for the production of fluctuations) expand

dramatically and the theory loses a lot of its predictive power. Some of the large number of

possibilities of multi-field inflationary models are reviewed in Ref. [19].
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7 Summary: Lecture 1

The initial conditions for the conventional FRW cosmology seem highly tuned. Both the horizon

problem and the flatness problem can be traced back to the fact that during the standard Big Bang

evolution the comoving Hubble radius, (aH)−1, grows monotonically with time. During inflation

on the other hand the comoving Hubble radius is temporarily decreasing. This changes the causal

Past Light-Cone

Recombination

Particle Horizon

Conformal Time

Last-Scattering Surface

Big Bang Singularity

Reheating

causal contact

In
fla

tio
n

τrec

τ0

0

τi = −∞

Figure 13: Conformal diagram of inflationary cosmology. Inflation extends conformal time to neg-

ative values! The end of inflation creates an “apparent” Big Bang at τ = 0. There

is, however, no singularity at τ = 0 and the light cones intersect at an earlier time if

inflation lasts for at least 60 e-folds.

structure of the early universe making the horizon problem a fiction of extrapolating the conventional

FRW expansion back to arbitrarily early times. From the Einstein Equations one may show that

a shrinking Hubble radius corresponds to accelerated expansion as it occurs if the universe is filled

with a negative pressure component. The three equivalent conditions for inflation therefore are

d(aH)−1

dt
< 0 ⇒ d2a

dt2
> 0 ⇒ p < −ρ

3
.

A negative pressure fluid can be modeled by scalar field φ, the inflaton, with the following action

S =

∫
d4x
√−g

[
1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
.

This will lead to inflation if the slow-roll conditions are satisfied

εv =
M2

pl

2

(
V,φ
V

)2

, ηv = M2
pl

V,φφ
V

, εv, |ηv| < 1 .
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The number of e-folds of inflationary expansion then is

N(φ) =

∫ φ

φend

dφ√
2εv

. (101)

The total number of e-folds needs to be at least 60 to solve the horizon problem. CMB fluctuations

are created during four e-folds about 60 e-folds before the end of inflation. Even in the restricted

framework for single-field slow-roll inflation described by the above action, there are a multitude of

inflationary models characterized by different choices for the inflationary potential V (φ).
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8 Problem Set: Lecture 1

Problem 1 (Homogeneous and Isotropic Spaces) Homogeneous and isotropic spaces are char-

acterized by translational and rotational invariance. Convince yourself that in three dimensions there

exist only three types of homogeneous and isotropic spaces with simple topology:

i) flat space

ii) a three-dimensional sphere with constant positive curvature

iii) a three-dimensional hyperbolic space with constant negative curvature.

It is easier to visualize the two-dimensional analogues. Consider the embedding of a two-dimensional

sphere in a three-dimensional Euclidean space

x2 + y2 + z2 = a2 , (102)

where a is the radius of the sphere. Show that the induced metric on the surface of the sphere is

d`22 =
dr′2

1− (r′2/a2)
+ r′2dφ2 , (103)

where x = r′ cosφ and y = r′ sinφ. The limit a2 →∞ corresponds to flat space (a plane). Negative a2

corresponds to a space with constant negative curvature. It cannot be embedded in three-dimensional

Euclidean space. (Consider the embedding of x2 + y2 − z2 = −a2 in a space with metric d`22 =

dx2 + dy2 − dz2 instead.)

By rescaling the radial coordinate the metric can be brought into the form

d`22 = |a2|
(

dr2

1− kr2
+ r2dφ2

)
, (104)

where k = +1 for the sphere (a2 > 0), k = −1 for the hyperbolic space (a2 < 0) and k = 0 for the

plane (a2 = 0).

Generalize the above argument to the embedding of homogeneous and isotropic three-dimensional

spaces in four-dimensional Euclidean space. Show that their metric is

d`23 = a2

(
dr2

1− kr2
+ r2dΩ2

)
, dΩ2 ≡ dθ2 + sin2 θdφ2 , (105)

or

d`23 = a2

dχ2 +

 sinh2 χ

χ2

sin2 χ

 dΩ2

 k = −1

k = 0

k = +1

. (106)

Convince yourself that the only time-dependent four-dimensional spacetime that preserves homogene-

ity and isotropy of space is the FRW metric

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
. (107)
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Problem 2 (Conformal Time) Derive some simple expressions for the conformal time τ as a

function of a.

1. Show that τ ∝ a1/2 in a matter-dominated universe and τ ∝ a in one dominated by radiation.

2. Consider a universe with only matter and radiation, with equality at aeq. Show that

τ =
2√

ΩmH2
0

[√
a+ aeq −√aeq

]
. (108)

What is the conformal time today? At decoupling?

3. Use your favorite software (say Mathematica or Maple) to compute the conformal time numer-

ically for our universe (filled with dark energy, matter and radiation). Compute the conformal

time today and at decoupling. What is the percentage error between this result and the analyt-

ical result for a matter/radiation only universe, Eqn. (108)?

Problem 3 (Friedmann Equations) Derive the Ricci tensor and the Ricci scalar for the FRW

spacetime (1)

R00 = −3
ä

a
, Rij = δij

[
2ȧ2 + aä+ 2

k

a2

]
, R = gµνRµν = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
. (109)

Confirm that the 00-component of the Einstein Equation (13) gives the Friedmann Equation(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (110)

Confirm that the trace of the Einstein Equation (13) gives the acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) . (111)

Show that the two Friedmann Equations imply the continuity equation

ρ̇ = −3H(ρ+ p) . (112)

Derive the continuity equation from

∇µTµν = 0 . (113)

(Hint: Contract Eqn. (113) with Uµ, use the energy-momentum tensor for a perfect fluid and the

properties of the 4-velocity. No need for Christoffel symbols!)

Problem 4 (λφ4 Inflation) Derive the slow-roll dynamics for λφ4 inflation.

Problem 5 (The Phase Space of mφ2 Inflation) Read about the attractor behavior of m2φ2 in-

flation in Mukhanov’s book [9].
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Part III

Lecture 2: Quantum Fluctuations

during Inflation

Abstract

In this lecture we present the famous calculation of the primordial fluctuation spectra

generated by quantum fluctuations during inflation. We present the calculation in full

detail and try to avoid ‘cheating’ and approximations. After a brief review of fundamen-

tal aspects of cosmological perturbation theory, we first give a qualitative summary of

the basic mechanism by which inflation converts microscopic quantum fluctuations into

macroscopic seeds for cosmological structure formation. As a pedagogical introduction

to quantum field theory in curved spacetime we then review the quantization of the

simple harmonic oscillator. We emphasize that a unique vacuum state is chosen by de-

manding that the vacuum is the minimum energy state. We then proceed by giving the

corresponding calculation for inflation. We calculate the power spectra of both scalar

and tensor fluctuations and discuss their dependence on scale.

In the last lecture we studied the classical (~ = 0) dynamics of a scalar field rolling down a

potential with speed φ̇ (see Fig. 14). In this lecture we study the effects of quantum (~ 6= 0)

fluctuations around the classical background evolution φ̄(t). These fluctuations lead to a local time

delay in the time at which inflation ends, i.e. different parts of the universe will end inflation at

slightly different times. For instance, for the potential shown in Fig. 14 regions acquiring a negative

frozen fluctuations δφ remain potential-dominated longer than regions with positive δφ. Different

parts of the universe therefore undergo slightly different evolutions. This induces relative density

fluctuations δρ(t,x).

reheating

Figure 14: Quantum fluctuations δφ(t,x) around the classical background evolution φ̄(t).
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In this lecture we will discuss the technical details underlying this basic picture for the quantum

origin of large-scale structure.

Figure 15: Observations of the CMB anisotropies prove that the early universe wasn’t perfectly ho-

mogeneous. However, the observations also show that the inhomogeneities were small

and can therefore be analyzed as linear perturbations around a homogenous back-

ground.

9 Review: Cosmological Perturbations

In this lecture we present in detail the generation of cosmological perturbations from quantum fluc-

tuations during inflation. This discussion will require some background in cosmological perturbation

theory which we now briefly review. More details may be found in Appendix A.

9.1 Generalities

9.1.1 Linear Perturbations

Observations of the CMB (Fig. 15) explain the success of cosmological perturbation theory. At the

time of decoupling the universe was very nearly homogeneously with small inhomogeneities at the

10−5 level. A natural strategy therefore is to split all quantities X(t,x) (metric gµν and matter fields

Tµν → φ ρ, p, etc.) into a homogeneous background X̄(t) that depends only on cosmic time and a

spatially dependent perturbation

δX(t,x) ≡ X(t,x)− X̄(t) . (114)

Because the perturbations are small, δX � X̄, expanding the Einstein Equations at linear order in

perturbations approximates the full non-linear solution to very high accuracy

δGµν = 8πGδTµν . (115)
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9.1.2 Gauge Choice

A crucial subtlety in the study of cosmological perturbations is the fact that the split into background

and perturbations, Eqn. (114), is not unique, but depends on the choice of coordinates or the gauge

choice.7 When we described the homogeneous universe in Lecture 1 we introduced coordinates t and

x to define the FRW metric. The spacelike hypersurfaces of constant time t defined the slicing to the

four-dimensional spacetime, while the timelike worldlines of constant x defined the threading. The

FRW threading corresponds to the motion of comoving observers who see zero momentum density

at their location. These observers a free-falling and the expansion defined by them is isotropic.

The slicing is orthogonal to the threading with each spacelike slice corresponding to a homogeneous

universe. These features made our coordinate choice so distinguished that we never worried about

other coordinates (in which the universe would not look homogeneous and isotropic). However, now

that we are considering perturbations it is important to realize that the slicing and threading of the

perturbed spacetime is not unique. Furthermore, when describing an inhomogeneous spacetime there

is often not a preferred coordinate choice. When we make a gauge choice to define the slicing and

threading of the spacetime we implicitly also define the perturbations. If we aren’t careful this gauge

dependence of perturbations can lead to some confusion. To demonstrate this fact most dramatically

consider an unperturbed homogeneous and isotropic universe, where the energy density is only a

function of time, ρ(t,x) = ρ(t). We now show that a change of the time coordinate can introduce

fictitious perturbations δρ. Consider a new time coordinate t̃ = t + δt(t,x). In general, the energy

density on the new time-slice will not be homogeneous, ρ̃(t̃,x) = ρ(t(t̃,x)). These perturbations in

the energy density aren’t physical, but entirely due to the choice of new time-slicing. Similarly, we

can remove a real perturbation in the energy density by choosing the hypersurface of constant time

to coincide with the hypersurface of constant energy density. Then δρ̃ = 0 although there are real

inhomogeneities. To resolve ambiguities between real and fake perturbations in general relativity, we

need to consider the complete set of perturbations, i.e. we need both the matter field perturbations

and the metric perturbations and by a gauge transformation we can trade one for the other. To

avoid misinterpretation of fictitious gauge modes it will also be useful to study gauge-invariant

combinations of perturbations. By definition, fluctuations of gauge-invariant quantities cannot be

removed by a coordinate transformation.

9.1.3 Scalars, Vectors and Tensors

The spatially flat, homogeneous and isotropic background spacetime possesses a great deal of sym-

metry. These symmetries allow a decomposition of the metric and the stress-energy perturbations

into independent scalar (S), vector (V) and tensor (T) components. This SVT decomposition is most

7The perturbation δX in any relevent quantity, say represented by a tensor field X, is define as the

difference between the value X has in the physical spacetime (the perturbed spacetime), and the value X0 the

same quantity has in the given (unperturbed) background spacetime. However, it is a basic fact of differential

geometry that, in order to make the comparison of tensors meaningful, they can be compared only after a

prescription for identifying points of these two different spacetimes is given. A gauge choice is precisely this,

i.e. a one-to-one correspondence (map) between the background spacetime and the physical spacetime. A

change of this map is then a gauge transformation, and the freedom one has in choosing it gives rise to an

arbitrariness in the value of the perturbation of X at any given spacetime point, unless X is gauge-invariant.
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easily described in Fourier space

Xk(t) =

∫
d3x X(t,x) eik·x , X ≡ δφ, δgµν , etc . (116)

We note that translation invariance of the linear equations of motion for the perturbations means

that the different Fourier modes do not interact (see Appendix A for the proof). Different Fourier

modes can therefore be studied independently. This often simplifies the differential equations for the

perturbations. Next we consider rotations around a single Fourier wavevector k. A perturbation is

said to have helicity m if its amplitude is multiplied by eimψ under rotation of the coordinate system

around the wavevector by an angle ψ

Xk → eimψXk . (117)

Scalar, vector and tensor perturbations have helicity 0, ±1 and ±2, respectively.8 The importance

of the SVT decomposition is that the perturbations of each type evolve independently (at the linear

level) and can therefore be treated separately (see Appendix A for the proof). This considerably

simplifies the study of cosmological perturbations.

After these general remarks, let us now become more specific and explicitly define the perturba-

tions around the homogenous and isotropic FRW universe.

9.2 The Inhomogeneous Universe

9.2.1 Metric Perturbations

During inflation we define perturbations around the homogeneous background solutions for the

inflaton φ̄(t) and the metric ḡµν(t),

φ(t,x) = φ̄(t) + δφ(t,x) , gµν(t,x) = ḡµν(t) + δgµν(t,x) , (118)

where

ds2 = gµν dxµdxν

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2[(1− 2Ψ)δij + Eij ]dx

idxj . (119)

In real space, the SVT decomposition of the metric perturbations (119) is9

Bi ≡ ∂iB − Si , where ∂iSi = 0 , (120)

and

Eij ≡ 2∂ijE + 2∂(iFj) + hij , where ∂iFi = 0 , hii = ∂ihij = 0 . (121)

The vector perturbations Si and Fi aren’t created by inflation (and in any case decay with the

expansion of the universe). For this reason we ignore vector perturbations in these lectures. Our focus

8Should this abstract definition of scalar, vector and tensor perturbations in terms of their helicities be

confusing, the reader may want to test those rules on the explicit metric and stress-energy perturbations

introduced in the next section.
9SVT decomposition in real space corresponds to the distinct transformation properties of scalars, vectors

and tensors on spatial hypersurfaces.
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will be on scalar and tensor fluctuations which are observed as density fluctuations and gravitational

waves in the late universe.

Tensor fluctuations are gauge-invariant, but scalar fluctuations change under a change of coor-

dinates. Consider the gauge transformation

t → t+ α (122)

xi → xi + δijβ,j . (123)

Under these coordinate transformations the scalar metric perturbations transform as

Φ → Φ− α̇ (124)

B → B + a−1α− aβ̇ (125)

E → E − β (126)

Ψ → Ψ +Hα . (127)

Exercise 4 (Linear Gauge Transformations) Derive the gauge transformations of the scalar

metric perturbations (124)–(127). Hint: use invariance of the spacetime interval,

ds2 = gµνdxµdxν = g̃µνdx̃µdx̃ν . (128)

9.2.2 Matter Perturbations

During inflation the inflationary energy is the dominant contribution to the stress-energy of the

universe, so that the inflaton perturbations δφ backreact on the spacetime geometry. This coupling

between matter perturbations and metric perturbations is described by the Einstein Equations (see

Appendix A).

After inflation, the perturbations to the total stress-energy tensor of the universe are

T 0
0 = −(ρ̄+ δρ) (129)

T 0
i = (ρ̄+ p̄) avi (130)

T i0 = −(ρ̄+ p̄)(vi −Bi)/a (131)

T ij = δij(p̄+ δp) + Σi
j . (132)

The anisotropic stress Σi
j is gauge-invariant while the density, pressure and momentum density

((δq),i ≡ (ρ̄+ p̄)vi) transform as follows

δρ → δρ− ˙̄ρα (133)

δp → δp− ˙̄pα (134)

δq → δq + (ρ̄+ p̄)α . (135)
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9.2.3 Gauge-Invariant Variables

As we explained above, to avoid the pitfall of fictitious gauge modes, it useful to introduce gauge-

invariant combinations of metric and matter perturbations [20]. An important gauge-invariant scalar

quantity is the curvature perturbation on uniform-density hypersurfaces [21]

−ζ ≡ Ψ +
H
˙̄ρ
δρ . (136)

Geometrically, ζ measures the spatial curvature of constant-density hypersurfaces, R(3) = 4∇2Ψ/a2.

An important property of ζ is that it remains constant outside the horizon for adiabatic matter

perturbations, i.e. perturbations that satisfy

δpen ≡ δp−
˙̄p
˙̄ρ
δρ = 0 . (137)

Notice that the definition of δpen is gauge-invariant. In the single-field inflation models studied in

this lecture the condition (297) is always satisfy, so the perturbation ζk doesn’t evolve outside the

horizon, k � aH.

In a gauge defined by spatially flat hypersurfaces, Ψ, the perturbations ζ is the dimensionless

density perturbation 1
3δρ/(ρ̄ + p̄). Taking into account appropriate transfer functions to describe

the sub-horizon evolution of the fluctuations, CMB and LSS observations can therefore be related

to the primordial value of ζ (see Lecture 3). During slow-roll inflation

− ζ ≈ Ψ +
H
˙̄φ
δφ . (138)

Another gauge-invariant scalar is the comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ p̄
δq , (139)

where δq is the scalar part of the 3-momentum density T 0
i = ∂iδq. During inflation T 0

i = − ˙̄φ∂iδφ

and hence

R = Ψ +
H
˙̄φ
δφ . (140)

Geometrically, R measures the spatial curvature of comoving (or constant-φ) hypersurfaces.

The linearized Einstein equations relate ζ and R as follows (see Appendix A)

− ζ = R+
k2

(aH)2

2ρ̄

3(ρ̄+ p̄)
ΨB , (141)

where

ΨB ≡ ψ + a2H(Ė −B/a) , (142)

is one of the Bardeen potentials [20]. ζ and R are therefore equal on superhorizon scales, k � aH.

ζ and R are also equal during slow-roll inflation, cf. Eqs. (138) and (140). The correlation functions

of ζ and R are therefore equal at horizon crossing and both ζ and R are conserved on superhorizon

scales. In this lecture we will compute the primordial spectrum of R at horizon crossing.
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Finally, a gauge-invariant measure of inflaton perturbations is the inflaton perturbation on spa-

tially flat slices

Q ≡ δφ+
˙̄φ

H
Ψ . (143)

Exercise 5 (Gauge-Invariant Perturbations) Using the linear gauge transformations for the

metric and matter perturbations, confirm that ζ, R and Q are gauge-invariant.

9.2.4 Superhorizon (Non-)Evolution

The Einstein equations (see Appendix A) give the evolution equation for the gauge-invariant curva-

ture perturbation

Ṙ = − H

ρ̄+ p̄
δpen +

k2

(aH)2

(
. . .
)
. (144)

Adiabatic matter perturbations satisfy δpen = 0 and R is conserved on superhorizon scales, k < aH.

Exercise 6 (Separate Universe Approach) Read about the separate universe approach [22] for

proving conservation of the curvature perturbation R on superhorizon scales.

9.3 Statistics of Cosmological Perturbations

A crucial statistical measure of the primordial scalar fluctuations is the power spectrum of R (or

ζ)10

〈RkRk′〉 = (2π)3 δ(k + k′)PR(k) , ∆2
s ≡ ∆2

R =
k3

2π2
PR(k) . (145)

Here, 〈 ... 〉 defines the ensemble average of the fluctuations. The scale-dependence of the power

spectrum is defined by the scalar spectral index (or tilt)

ns − 1 ≡ d ln ∆2
s

d ln k
, (146)

where scale-invariance corresponds to the value ns = 1. We may also define the running of the

spectral index by

αs ≡
dns

d ln k
. (147)

The power spectrum is often approximated by a power law form

∆2
s (k) = As(k?)

(
k

k?

)ns(k?)−1+ 1
2
αs(k?) ln(k/k?)

, (148)

where k? is an arbitrary reference or pivot scale.

IfR is Gaussian then the power spectrum contains all the statistical information. Primordial non-

Gaussianity is encoded in higher-order correlation functions of R. In single-field slow-roll inflation

the non-Gaussianity is predicted to be small [23, 24], but non-Gaussianity can be significant in

multi-field models or in single-field models with non-trivial kinetic terms and/or violation of the

10The normalization of the dimensionless power spectrum ∆2
R(k) is chosen such that the variance of R is

〈RR〉 =
∫∞
0

∆2
R(k) d ln k.
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slow-roll conditions. We will return to primordial non-Gaussianity in Lecture 4. In this lecture we

restrict our computation to Gaussian fluctuations and the associated power spectra.

The power spectrum for the two polarization modes of hij , i.e. h ≡ h+, h×, is defined as

〈hkhk′〉 = (2π)3 δ(k + k′)Ph(k) , ∆2
h =

k3

2π2
Ph(k) . (149)

We define the power spectrum of tensor perturbations as the sum of the power spectra for the two

polarizations

∆2
t ≡ 2∆2

h . (150)

Its scale-dependence is defined analogously to Eqn. (146) but for historical reasons without the −1,

nt ≡
d ln ∆2

t

d ln k
, (151)

i.e.

∆2
t (k) = At(k?)

(
k

k?

)nt(k?)

. (152)

Aim of this Lecture

It will be the aim of this lecture to compute the power spectra of scalar and tensor fluctuations,

PR(k) and Ph(k), from first principles. This is one of the most important calculations in modern

theoretical cosmology, so to understand it will be well worth our efforts.

10 Preview: The Quantum Origin of Structure

In the last lecture we discussed the classical evolution of the inflaton field. Something remarkable

happens when one considers quantum fluctuations of the inflaton: inflation combined with quantum

mechanics provides an elegant mechanism for generating the initial seeds of all structure in the

universe. In other words, quantum fluctuations during inflation are the source of the primordial

power spectra of scalar and tensor fluctuations, Ps(k) and Pt(k). In this section we sketch the

mechanism by which inflation relates microscopic physics to macroscopic observables. In §12 we

present the full calculation.

10.1 Quantum Zero-Point Fluctuations

As we will explain quantitatively in §12 quantum fluctuations during inflation induce a non-zero

variance for fluctuations in all light fields (like the inflaton or the metric perturbations). This is very

similar to the variance in the amplitude of a harmonic oscillator induced by zero-point fluctuations

in the ground state; see §11. The amplitude of fluctuations scales with the expansion parameter H

during inflation. This relates to the de Sitter horizon, H−1, and the quantum fluctuations during

inflation may also be interpreted as thermal fluctuations in de Sitter space in close analogy to the

Hawking radiation for black holes.
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Figure 16: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on subhorizon scales. While comoving scales, k−1, re-

main constant the comoving Hubble radius during inflation, (aH)−1, shrinks and the

perturbations exit the horizon. Causal physics cannot act on superhorizon perturba-

tions and they freeze until horizon re-entry at late times.

Fluctuations are created on all length scales, i.e. with a spectrum of wavenumbers k. Cosmolog-

ically relevant fluctuations start their lives inside the horizon (Hubble radius),

subhorizon : k � aH . (153)

However, while the comoving wavenumber is constant the comoving Hubble radius shrinks during

inflation (recall this is how we ‘defined’ inflation!), so eventually all fluctuations exit the horizon

superhorizon : k < aH . (154)

10.2 Horizon Exit and Re-Entry

Cosmological inhomogeneity is characterized by the intrinsic curvature of spatial hypersurfaces de-

fined with respect to the matter, R or ζ. Both R and ζ have the attractive feature that they remain

constant outside the horizon, i.e. when k < aH. In particular, their amplitude is not affected by

the unknown physical properties of the universe shortly after inflation (recall that we know next to

nothing about the details of reheating; it is the constancy of R and ζ outside the horizon that allows

us to nevertheless predict cosmological observables). After inflation, the comoving horizon grows,

so eventually all fluctuations will re-enter the horizon. After horizon re-entry, R or ζ determine the

perturbations of the cosmic fluid resulting in the observed CMB anisotropies and the LSS.

In Lecture 1 we explained the evolution of the comoving horizon during inflation and in the

standard FRW expansion after inflation. In this lecture (Lecture 2) we will compute the primordial

power spectrum of comoving curvature fluctuations R at horizon exit. In the next lecture (Lecture

3) we will compute the relation of curvature fluctuationsR to fluctuations in cosmological observables
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after horizon re-entry. Together these three lectures therefore provide a complete account of both the

generation and the observational consequences of the quantum fluctuations produced by inflation.

It is a beautiful story. Let us begin to unfold it.

11 Quantum Mechanics of the Harmonic Oscillator

“The career of a young theoretical physicist consists of treating the harmonic oscillator

in ever-increasing levels of abstraction.”

Sidney Coleman

The computation of quantum fluctuations generated during inflation is algebraically quite inten-

sive and it is therefore instructive to start with a simpler example which nevertheless contains most

of the relevant physics. We therefore warm up by considering the quantization of a one-dimensional

simple harmonic oscillator. Harmonic oscillators are one of the few physical systems that physicists

know how to solve exactly. Fortunately, almost all more complicated physical systems can be rep-

resented by a collection of simple harmonic oscillators with different amplitudes and frequencies.

This is of course what Fourier analysis is all about. We will show below that free fields in curved

spacetime (and de Sitter space in particular) are similar to collections of harmonic oscillators with

time-dependent frequencies. The detailed treatment of the quantum harmonic oscillator in this sec-

tion will therefore not be in vain, but will provide important intuition for the inflationary calculation.

This section is based on the excellent treatment of [26].

11.1 Action

The classical action of a harmonic oscillator with time-dependent frequency is

S =

∫
dt

(
1

2
ẋ2 − 1

2
ω2(t)x2

)
≡
∫

dt L , (155)

where x is the deviation of the particle from its equilibrium state, x ≡ 0, and for convenience we

have set the particle mass to one, m ≡ 1. For concreteness one may wish to consider a particle of

mass m on a spring which is heated by an external source so that its spring constant depends on

time, k(t), where ω2 = k/m. The classical equation of motion follows from variation of the action

with respect to the particle coordinate x

δS

δx
= 0 ⇒ ẍ+ ω2(t)x = 0 . (156)

11.2 Canonical Quantization

Canonical quantization of the system proceeds in the standard way: We define the momentum

conjugate to x

p ≡ dL

dẋ
= ẋ, (157)

which agrees with the standard notion of the particle’s momentum p = mv. We then promote the

classical variables x, p to quantum operators x̂, p̂ and impose the canonical commutator

[x̂, p̂] = i~ , (158)
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where [x̂, p̂] ≡ x̂p̂ − p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example

[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators

x̂ = v(t) â+ v∗(t) â† , (160)

where the (complex) mode function satisfies the classical equation of motion

v̈ + ω2(t)v = 0 . (161)

The commutator (158) becomes

〈v, v〉[â, â†] = 1 , (162)

where

〈v, w〉 ≡ i

~
(v∗∂tw − (∂tv

∗)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number 〈v, v〉
is positive. The function v can then be rescaled such that 〈v, v〉 ≡ 1 and hence

[â, â†] = 1 . (164)

Eqn. (164) is the standard relation for the raising and lowering operators of a harmonic oscillator.

We have hence identified the following annihilation and creation operators

â = 〈v, x̂〉 (165)

â† = −〈v∗, x̂〉 , (166)

and can define the vacuum state |0〉 via the prescription

â|0〉 = 0 , (167)

i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|n〉 ≡ 1√
n!

(â†)n|0〉 . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.

N̂ |n〉 = n|n〉 . (169)

11.3 Non-Uniqueness of the Mode Functions

We haven’t yet determined unique mode functions and hence we haven’t fixed the vacuum state. Any

change in v(t) that keeps the solution x(t) unchanged will lead to a change in the creating operator

â = 〈v, x̂〉 and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency ω(t) (and for quantum fields in curved spacetime) there is in fact
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Different choices for the

solution v(t) give different vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 ω(t) = ω. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0〉 the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),

Ĥ =
1

2
p̂2 +

1

2
ω2x̂2 (170)

=
1

2

[
(v̇2 + ω2v2)ââ+ (v̇2 + ω2v2)∗ â†â† + (|v̇|2 + ω2|v|2)(ââ† + â†â)

]
.

Using â|0〉 = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on

the vacuum state

Ĥ|0〉 =
1

2
(v̇2 + ω2v2)∗ â†â†|0〉+

1

2
(|v̇|2 + ω2|v|2)|0〉 . (171)

The requirement that |0〉 be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±iωv , (172)

and hence

〈v, v〉 = ∓2ω

~
|v|2 . (173)

Positivity of the normalization condition 〈v, v〉 > 0 selects the minus sign in Eqn. (172)

v̇ = −iωv . (174)

Properly normalized (〈v, v〉 = 1) this gives the following positive-frequency solution

v(t) =

√
~

2ω
e−iωt . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~ω
(
N̂ +

1

2

)
, (176)

for which the vacuum |0〉 is the state of minimum energy ~ω/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep

inside the horizon.
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11.4 Zero-Point Fluctuations in the Ground State

Consider the mean square expectation value of the position operator x̂ in the ground state |0〉

〈|x̂|2〉 ≡ 〈0|x̂†x̂|0〉
= 〈0|(v∗â† + vâ)(vâ+ v∗â†)|0〉
= |v(ω, t)|2〈0|ââ†|0〉
= |v(ω, t)|2〈0|[â, â†]|0〉
= |v(ω, t)|2 . (177)

This characterizes the zero-point fluctuations of the position in the vacuum state as the square of

the mode function

〈|x̂|2〉 = |v(ω, t)|2 =
~

2ω
. (178)

This is all we need to know about quantum mechanics to compute the fluctuation spectrum created

by inflation. However, first we need to do quite a bit of work to derive the mode equation for the

scalar mode of cosmological perturbations, i.e. the analogue of Eqn. (161).

12 Quantum Fluctuations in de Sitter Space

We have finally come to the highlight of this lecture: the full computation of the quantum-mechanical

fluctuations generated during inflation and their relation to cosmological perturbations. Our calcu-

lation follows closely the treatment by Maldacena [24].

12.1 Summary of the Computational Strategy

The last two sections might have bored you, but they provided important background for the com-

putation of inflationary fluctuations. We have defined the gauge-invariant curvature perturbation

R. It is conserved outside of the horizon, so we can compute it at horizon exit and remain ignorant

about the subhorizon physics during and after reheating until horizon re-entry of a given R-mode.

We have recalled the quantization of the simple harmonic oscillator, so by writing the equation of

motion for R in simple harmonic oscillator form we are in the position to study the quantization of

scalar fluctuations during inflation.

Here is a summary of the steps we will perform in the following sections:

1. We expand the action for single-field slow-roll inflation to second order in fluctuations. Spe-

cially, we derive the second-order expansion of the action in terms of R. The action approach

guarantees the correct normalization for the quantization of fluctuations.

2. From the action we derive the equation of motion for R and show that it is of SHO form.

3. The mode equations for R will be hard to solve exactly so we consider several approximate

solutions valid during slow-roll evolution.
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4. We promote the classical field R to a quantum operator and quantize it. Imposing the canon-

ical commutation relation for quantum operators will lead to a boundary condition on the

mode functions. This doesn’t fix the mode function completely.

5. We define the vacuum state by matching our solutions to the Minkowski vacuum in the

ultraviolet, i.e. on small scales when the mode is deep inside the horizon. This fixes the

mode functions completely and their large-scale limit is hence determined.

6. We then compute the power spectrum of curvature fluctuations at horizon crossing. In Lec-

ture 3 we will relate the power spectrum at horizon crossing during inflation to the angular

power spectrum of CMB fluctuations at recombination.

Enough talking, let’s compute!

12.2 Scalar Perturbations

We consider single-field slow-roll models of inflation defined by the action

S =
1

2

∫
d4x
√−g

[
R− (∇φ)2 − 2V (φ)

]
, (179)

in units where M−2
pl ≡ 8πG = 1. To fix time and spatial reparameterizations we choose the following

gauge for the dynamical fields gij and φ

δφ = 0 , gij = a2[(1− 2R)δij + hij ] , ∂ihij = hii = 0 . (180)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are parameterized

by the metric fluctuation R(t,x). An important property of R is that it remains constant outside

the horizon. We can therefore restrict our computation to correlation functions of R at horizon

crossing. The remaining metric perturbations Φ and B are related to R by the Einstein Equations;

in the ADM formalism (see Appendix B) these are pure constraint equations.

12.2.1 Free Field Action

With quite some effort (see Appendix B) one may expand the action (179) to second order in R

S(2) =
1

2

∫
d4x a3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (181)

Defining the Mukhanov variable

v ≡ zR , where z2 ≡ a2 φ̇
2

H2
= 2a2ε , (182)

and transitioning to conformal time τ leads to the action for a canonically normalized scalar

S(2) =
1

2

∫
dτd3x

[
(v′)2 + (∂iv)2 +

z′′

z
v2

]
, (...)′ ≡ ∂τ (...) . (183)
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Exercise 8 (Mukhanov Action) Confirm Eqn. (183). Hint: use integration by parts.

We define the Fourier expansion of the field v

v(τ,x) =

∫
d3k

(2π)3
vk(τ)eik·x , (184)

where

v′′k +

(
k2 − z′′

z

)
vk = 0 . (185)

Here, we have dropped to vector notation k on the subscript, since (185) depends only on the mag-

nitude of k. The Mukhanov Equation (185) is hard to solve in full generality since the function

z depends on the background dynamics. For a given inflationary background one may solve (185)

numerically. However, to gain a more intuitive understanding of the solutions we will discuss ap-

proximate analytical solutions in the pure de Sitter limit (§12.2.4) and in the slow-roll approximation

(Problem 7).

12.2.2 Quantization

The quantization of the field v is performed in completely analogy with our treatment of the quantum

harmonic oscillator in §11.

As before we promote the field v and its conjugate momentum v′ to quantum operator

v → v̂ =

∫
dk3

(2π)3

[
vk(τ)âke

ik·x + v∗k(τ)â†ke
−ik·x

]
. (186)

Alternatively, the Fourier components vk are promoted to operators and expressed via the following

decomposition

vk → v̂k = vk(τ)âk + v∗−k(τ)â†−k , (187)

where the creation and annihilation operators â†−k and âk satisfy the canonical commutation relation

[âk, â
†
k′ ] = (2π)3δ(k− k′) , (188)

if and only if the mode functions are normalized as follows

〈vk, vk〉 ≡
i

~
(v∗kv

′
k − v∗k ′vk) = 1 . (189)

Eqn. (189) provides one of the boundary conditions on the solutions of Eqn. (185). The second

boundary conditions that fixes the mode functions completely comes from vacuum selection.

12.2.3 Boundary Conditions and Bunch-Davies Vacuum

We must choose a vacuum state for the fluctuations,

âk|0〉 = 0 , (190)

which corresponds to specifying an additional boundary conditions for vk (see e.g. Chapter 3 in

Birell and Davies [25]). The standard choice is the Minkowski vacuum of a comoving observer in
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the far past (when all comoving scales were far inside the Hubble horizon), τ → −∞ or |kτ | � 1 or

k � aH. In this limit the mode equation (185) becomes

v′′k + k2vk = 0 . (191)

This is the equation of a simple harmonic oscillator with time-independent frequency! For this case

we showed that a unique solution (175) exists if we require the vacuum to be the minimum energy

state. Hence we impose the initial condition

lim
τ→−∞

vk =
e−ikτ√

2k
. (192)

The boundary conditions (189) and (192) completely fix the mode functions on all scales.

12.2.4 Solution in de Sitter Space

Consider the de Sitter limit ε→ 0 (H = const.) and

z′′

z
=
a′′

a
=

2

τ2
. (193)

In a de Sitter background we therefore wish to solve the mode equation

v′′k +

(
k2 − 2

τ2

)
vk = 0 . (194)

Exercise 9 (de Sitter Mode Functions) Verify by direct substitution that an exact solution to

Eqn. (194) is

vk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (195)

The free parameters α and β characterize the non-uniqueness of the mode functions. However,

we may fix α and β to unique values by considering the quantization condition (189) together with

the subhorizon limit, |kτ | � 1, Eqn. (192). This fixes α = 1, β = 0 and leads to the unique

Bunch-Davies mode functions

vk =
e−ikτ√

2k

(
1− i

kτ

)
. (196)

12.2.5 Power Spectrum in Quasi-de Sitter

We then compute the power spectrum of the field ψ̂k ≡ a−1v̂k,

〈ψ̂k(τ)ψ̂k′(τ)〉 = (2π)3δ(k + k′)
|vk(τ)|2
a2

(197)

= (2π)3δ(k + k′)
H2

2k3
(1 + k2τ2) . (198)

On superhorizon scales, |kτ | � 1, this approaches a constant

〈ψ̂k(τ)ψ̂k′(τ)〉 → (2π)3δ(k + k′)
H2

2k3
. (199)
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or

∆2
ψ =

(
H

2π

)2

. (200)

The de Sitter result for ψ = v/a, Eqn. (199), allows us to compute the power spectrum of R = H
φ̇
ψ

at horizon crossing, a(t?)H(t?) = k,

〈Rk(t)Rk′(t)〉 = (2π)3δ(k + k′)
H2
?

2k3

H2
?

φ̇2
?

. (201)

Here, (...)? indicates that a quantity is to be evaluated at horizon crossing. We define the dimen-

sionless power spectrum ∆2
R(k) by

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) , ∆2
R(k) ≡ k3

2π2
PR(k) , (202)

such that the real space variance of R is 〈RR〉 =
∫∞

0 ∆2
R(k) d ln k. This gives

∆2
R(k) =

H2
?

(2π)2

H2
?

φ̇2
?

. (203)

Since R approaches a constant on super-horizon scales the spectrum at horizon crossing determines

the future spectrum until a given fluctuation mode re-enters the horizon.

The fact that we computed the power spectrum at a specific instant (horizon crossing, a?H? = k)

implicitly extends the result for the pure de Sitter background to a slowly time-evolving quasi-de

Sitter space. Different modes exit the horizon as slightly different times when a?H? has a different

value. This procedure gives the correct result for the power spectrum during slow-roll inflation (we

prove this more rigorously in Problem 7.). For non-slow-roll inflation the background evolution

will have to be tracked more precisely and the Mukhanov Equation typically has to be integrated

numerically.

12.2.6 Spatially-Flat Gauge

In the previous sections we followed Maldacena and used the comoving gauge (δφ = 0) to compute

the scalar power spectrum. A popular alternative to obtain the same result is to use spatially-flat

gauge. In spatially-flat gauge, perturbations in R are related to perturbations in the inflaton field

value12 δφ, cf. Eqn. (140) with Ψ = 0

R = H
δφ

φ̇
≡ −Hδt . (204)

The power spectrum of R and the power spectrum of inflaton fluctuations δφ are therefore related

as follows

〈RkRk′〉 =

(
H

φ̇

)2

〈δφk δφk′〉 . (205)

12Intuitively, the curvature perturbation R is related to a spatially varying time-delay δt(x) for the end of

inflation. This time-delay is induced by the inflaton fluctuation δφ.
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Finally, in the case of slow-roll inflation, quantum fluctuations of a light scalar field (mφ � H) in

quasi-de Sitter space (H ≈ const.) scale with the Hubble parameter H, cf. Eqn. (200),

〈δφk δφk′〉 = (2π)3 δ(k + k′)
2π2

k3

(
H

2π

)2

, ∆2
δφ =

(
H

2π

)2

. (206)

Inflationary quantum fluctuations therefore produce the following power spectrum for R

∆2
R(k) =

H2
?

(2π)2

H2
?

φ̇2
?

. (207)

This is consistent with our result (203).

12.3 Tensor Perturbations

Having discussed the quantization of scalar perturbation is some details, the corresponding calcula-

tion for tensor perturbations will appear almost trivial.

12.3.1 Action

By expansion of the Einstein-Hilbert action one may obtain the second-order action for tensor

fluctuations is

S(2) =
M2

pl

8

∫
dτdx3a2

[
(h′ij)

2 − (∂lhij)
2
]
. (208)

Here, we have reintroduced explicit factors of Mpl to make hij manifestly dimensionless. Up to a

normalization factor of
Mpl

2 this is the same as the action for a massless scalar field in an FRW

universe.

We define the following Fourier expansion

hij =

∫
d3k

(2π)3

∑
s=+,×

εsij(k)hsk(τ)eik·x , (209)

where εii = kiεij = 0 and εsij(k)εs
′
ij(k) = 2δss′ . The tensor action (208) becomes

S(2) =
∑
s

∫
dτdk

a2

4
M2

pl

[
hsk
′hsk
′ − k2hskh

s
k

]
. (210)

We define the canonically normalized field

vsk ≡
a

2
Mplh

s
k , (211)

to get

S(2) =
∑
s

1

2

∫
dτd3k

[
(vsk
′)2 −

(
k2 − a′′

a

)
(vsk)2

]
, (212)

where
a′′

a
=

2

τ2
(213)

holds in de Sitter space. This should be recognized as effectively two copies of the action (183).
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12.3.2 Quantization

Each polarization of the gravitational wave is therefore just a renormalized massless field in de Sitter

space

hsk =
2

Mpl
ψsk , ψsk ≡

vk
a
. (214)

Since we computed the power spectrum of ψ = v/a in the previous section, ∆2
ψ = (H/2π)2m we

can simply right down the answer for ∆2
h, the power spectrum for a single polarization of tensor

perturbations,

∆2
h(k) =

4

M2
pl

(
H?

2π

)2

. (215)

Again, the r.h.s. is to be evaluated at horizon exit.

12.3.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is

∆2
t = 2∆2

h(k) =
2

π2

H2
?

M2
pl

. (216)

12.4 The Energy Scale of Inflation

Tensor fluctuations are often normalized relative to the (measured) amplitude of scalar fluctuations,

∆2
s ≡ ∆2

R ∼ 10−9. The tensor-to-scalar ratio is

r ≡ ∆2
t (k)

∆2
s (k)

. (217)

Since ∆2
s is fixed and ∆2

t ∝ H2 ≈ V , the tensor-to-scalar ratio is a direct measure of the energy scale

of inflation

V 1/4 ∼
( r

0.01

)1/4
1016 GeV . (218)

Large values of the tensor-to-scalar ratio, r ≥ 0.01, correspond to inflation occuring at GUT scale

energies.

12.5 The Lyth Bound

Note from Eqns. (203) and (216) that the tensor-to-scalar ratio relates directly to the evolution of

the inflaton as a function of e-folds N

r =
8

M2
pl

(
dφ

dN

)2

. (219)

The total field evolution between the time when CMB fluctuations exited the horizon at Ncmb and

the end of inflation at Nend can therefore be written as the following integral

∆φ

Mpl
=

∫ Ncmb

Nend

dN

√
r

8
. (220)
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During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]

∆φ

Mpl
= O(1)×

( r

0.01

)1/2
, (221)

where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with ∆φ > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are

∆2
s (k) ≡ ∆2

R(k) =
1

8π2

H2

M2
pl

1

ε

∣∣∣∣∣
k=aH

, (222)

∆2
t (k) ≡ 2∆2

h(k) =
2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

, (223)

where

ε = −d lnH

dN
. (224)

The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is

r ≡ ∆2
t

∆2
s

= 16 ε? . (225)

13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices

ns − 1 ≡ d ln ∆2
s

d ln k
, nt ≡

d ln ∆2
t

d ln k
. (226)

We split this into two factors
d ln ∆2

s

d ln k
=
d ln ∆2

s

dN
× dN

d ln k
. (227)

The derivative with respect to e-folds is

d ln ∆2
s

dN
= 2

d lnH

dN
− d ln ε

dN
. (228)

The first term is just −2ε and the second term may be evaluated with the following result from

Appendix D
d ln ε

dN
= 2(ε− η) , where η = −d lnH,φ

dN
. (229)

The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + lnH . (230)
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Hence
dN

d ln k
=

[
d ln k

dN

]−1

=

[
1 +

d lnH

dN

]−1

≈ 1 + ε . (231)

To first order in the Hubble slow-roll parameters we therefore find

ns − 1 = 2η? − 4ε? . (232)

Similarly, we find

nt = −2ε? . (233)

Any deviation from perfect scale-invariance (ns = 1 and nt = 0) is an indirect probe of the infla-

tionary dynamics as quantified by the parameters ε and η.

13.2 Slow-Roll Results

In the slow-roll approximation the Hubble and potential slow-roll parameters are related as follows

ε ≈ εv , η ≈ ηv − εv . (234)

The scalar and tensor spectra are then expressed purely in terms of V (φ) and εv (or V,φ)

∆2
s (k) ≈ 1

24π2

V

M4
pl

1

εv

∣∣∣∣∣
k=aH

, ∆2
t (k) ≈ 2

3π2

V

M4
pl

∣∣∣∣∣
k=aH

. (235)

The scalar spectral index is

ns − 1 = 2η?v − 6ε?v . (236)

The tensor spectral index is

nt = −2ε?v , (237)

and the tensor-to-scalar ratio is

r = 16ε?v . (238)

We see that single-field slow-roll models satisfy a consistency condition between the tensor-to-

scalar ratio r and the tensor tilt nt

r = −8nt . (239)

In the slow-roll approximation measurements of the scalar and tensor spectra relate directly

to the shape of the potential V (φ), i.e. H is a measure of of the scale of the potential, εv of its

first derivative V,φ, ηv of its second derivative V,φφ, etc. Measurements of the amplitude and the

scale-dependence of the cosmological perturbations therefore encode information about the poten-

tial driving the inflationary expansion. This allows to reconstruct a power series expansion of the

potential around φcmb (corresponding to the time when CMB fluctuations exited the horizon).
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13.3 Case Study: m2φ2 Inflation

Recall from Lecture 1 the slow-roll parameters form2φ2 inflation evaluated at φ? = φcmb, i.e.Ncmb ∼
60 e-folds before the end of inflation

ε?v = η?v = 2

(
Mpl

φcmb

)2

=
1

2Ncmb
. (240)

To satisfy the normalization of scalar fluctuations, ∆2
s ∼ 10−9, we need to fix the inflaton mass to

m ∼ 10−6Mpl. To see this note that Eqn. (235) implies

∆2
s =

m2

M2
pl

N2
cmb

3
. (241)

The scalar spectral index ns and the tensor-to-scalar ratio r evaluated at CMB scales are

ns = 1 + 2η?v − 6ε?v = 1− 2

Ncmb
≈ 0.96 , (242)

and

r = 16ε?v =
8

Ncmb
≈ 0.1 . (243)

These predictions of one of the simplest inflationary models are something to look out for in the

near future.
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14 Summary: Lecture 2

A defining characteristic of inflation is the behavior of the comoving Hubble radius, 1/(aH), which

shrinks quasi-exponentially. A mode with comoving wavenumber k is called super-horizon when

k < aH, and sub-horizon when k > aH. The inflaton is taken to be in a vacuum state, defined

such that sub-horizon modes approach the Minkowski vacuum for k � aH. After a mode exits

the horizon, it is described by a classical probability distribution with variance given by the power

spectrum evaluated at horizon crossing

Ps(k) =
H2

2k3

H2

φ̇2

∣∣∣∣
k=aH

.

Inflation also produces fluctuations in the tensor part of the spatial metric. This corresponds to a

spectrum of gravitational waves with power spectrum

Pt(k) =
4

k3

H2

M2
pl

∣∣∣∣∣
k=aH

.

For slow-roll models the scalar and tensor spectra are expressed purely in terms of V (φ) and εv (or

V,φ)

∆2
s (k) ≈ 1

24π2

V

M4
pl

1

εv

∣∣∣∣∣
k=aH

, ∆2
t (k) ≈ 2

3π2

V

M4
pl

∣∣∣∣∣
k=aH

,

where ∆2(k) ≡ k3

2π2P (k). The scale dependence is given by

ns − 1 ≡ d ln ∆2
s

d ln k
= 2ηv − 6εv ,

nt ≡
d ln ∆2

t

d ln k
= −2εv .

The tensor-to-scalar ratio is

r ≡ ∆2
t

∆2
s

= 16εv .

By the Lyth bound, r relates directly to total field excursion during inflation

∆φ

Mpl
≈
( r

0.01

)1/2
.

A large value for r therefore correlates both with a high scale for the inflationary energy and a

super-Planckian field evolution.
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15 Problem Set: Lecture 2

Problem 6 (Vacuum Selection) Read about the Unruh effect in your favorite resource for QFT

in curved spacetime.

Problem 7 (Slow-Roll Mode Functions) In this problem we compute the mode functions and

the power spectrum of curvature perturbations to first order in the slow-roll approximation.

Recall the mode equation

v′′k +

(
k2 − z′′

z

)
vk = 0 , z2 = 2a2ε . (244)

1. Show that
z′′

z
=
ν2 − 1/4

τ2
, ν ≈ 3

2
+ 3ε− η , (245)

at first order in the slow-roll parameters

ε ≡ − Ḣ

H2
, η ≡ 2ε− ε̇

2Hε
. (246)

The solution can then be expressed as a linear combination of Hankel functions

vk(τ) = x1/2
[
c1H

(1)
ν (x) + c2H

(2)
ν (x)

]
, x ≡ k|τ | . (247)

In the far past, x = k|τ | → ∞, the Hankel functions have the asymptotic limit

H(1,2)
ν (x)→

√
2

πx
exp

[
±i
(
x− νπ

2
− π

4

)]
(248)

2. Show that the boundary condition (192) implies

vk = a1(πx/4k)1/2H(1)
ν (x) , (249)

where

a1 = exp[i(2ν + 1)π/4] (250)

is a k-independent complex phase factor.

3. Compute the power spectrum of R = v/z at large scales, k � aH.

Hint: Use the identity

H(1)
ν (k|τ |) → i

π
Γ(ν)

(
k|τ |

2

)−ν
, for kτ → 0 , (251)

and Γ(3/2) =
√
π/2.

Show that this reproduces the result of perfect de Sitter in the limit ε = η = 0.

4. Read off the scale-dependence of the spectrum.
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Problem 8 (Predictions of λφ4 Inflation) Determine the predictions of an inflationary model

with a quartic potential

V (φ) = λφ4 . (252)

1. Compute the slow-roll parameters ε and η in terms of φ.

2. Determine φend, the value of the field at which inflation ends.

3. To determine the spectrum, you will need to evaluate ε and η at horizon crossing, k = aH (or

−kτ = 1). Choose the wavenumber k to be equal to a0H0, roughly the horizon today. Show

that the requirement −kτ = 1 then corresponds to

e60 =

∫ N

0
dN ′

eN
′

H(N ′)/Hend
, (253)

where Hend is the Hubble rate at the end of inflation, and N is defined to be the number of

e-folds before the end of inflation

N ≡ ln
(aend

a

)
. (254)

4. Take this Hubble rate to be a constant in the above with H/Hend = 1. This implies that

N ≈ 60. Turn this into an expression for φ. This simplest way to do this is to note that

N =
∫ tend
t dt′H(t′) and assume that H is dominated by potential energy. Show that this mode

leaves the horizon when φ = 22Mpl.

5. Determine the predicted values of ns, r and nt. Compare these predictions to the latest

WMAP5 data (see Lecture 3).

6. Estimate the scalar amplitude in terms of λ. Set ∆2
s ≈ 10−9. What value does this imply for

λ?

This model illustrates many of the features of generic inflationary models: (i) the field is of order

– even greater than – the Planck scale, but (ii) the energy scale V is much smaller than Planckian

because of (iii) the very small coupling constant.
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Part IV

Lecture 3: Contact with Observations

Abstract

In this lecture we describe the inverse problem of extracting information on the infla-

tionary perturbation spectra from observations of the cosmic microwave background and

the large-scale structure. We define the precise relations between the scalar and tensor

power spectra computed in the previous lecture and the observed CMB anisotropies

and the galaxy power spectrum. We describe the transfer functions that relate the pri-

mordial fluctuations to the late-time observables. We then use these results to discuss

the current observational evidence for inflation. Finally, we indicate opportunities for

future tests of inflation.

16 Connecting Observations to the Early Universe

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are or

what your name is. If it doesn’t agree with experiment, it’s wrong.”

Richard Feynman

In the last lecture we computed the power spectra of the primordial scalar and tensor fluctua-

tions R and h at horizon exit. In this lecture we relate these results to observations of the cosmic

microwave background (CMB) and the large-scale structure (LSS). Making this correspondence ex-

plicit is crucial for constraining the inflationary predictions.

The curvature perturbation R and the gravitational wave amplitude h both freeze at constant

values once the mode exits the horizon, k = a(τ?)H(τ?). In the previous lecture we therefore

computed the primordial perturbations at the time of horizon exit, τ?. To relate this to a cosmological

observable (like the CMB temperature or the density of galaxies) we need to

i) relate R (or h) to the quantity Q that is actually measured in an experiment and

ii) take into account the time evolution of R (and Q) once it re-enters the horizon.

Schematically, we may write

Qk(τ) = TQ(k, τ, τ?)Rk(τ?) , (255)

where TQ is the transfer function between R fluctuations at time τ? and Q fluctuations at some later

time τ . As we have indicated the transfer function may depend on scale. The quantity Q may be the

temperature fluctuations measured by a CMB satellite such as the Wilkinson Microwave Anisotropy
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(aH)−1

〈RkRk′〉 super-horzionsub-horizon

Ṙ ≈ 0

transfer
  function

CMB
recombination today

projection∆T C!

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Figure 17: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on subhorizon scales (see Lecture 2). While comoving

scales, k−1, remain constant the comoving Hubble radius during inflation, (aH)−1,

shrinks and the perturbations exit the horizon and freeze until horizon re-entry at late

times. After horizon re-entry the fluctuations evolve into anisotropies in the CMB

and perturbations in the LSS. This time-evolution has to be accounted for to relate

cosmological observations to the primordial perturbations laid down by inflation (see

Lecture 3).

Probe (WMAP) or the galaxy density inferred in a galaxy survey such as the Sloan Digital Sky

Survey (SDSS).

CMB anisotropies

The main result of §17 will be the following relation between the inflationary input spectra P (k) ≡
{PR(k), Ph(k)} and the angular power spectra of CMB temperature fluctuations and polarization

CXY` =
2

π

∫
k2dk P (k)︸ ︷︷ ︸

Inflation

∆X`(k)∆Y `(k)︸ ︷︷ ︸
Anisotropies

, (256)

where

∆X`(k) =

∫ τ0

0
dτ SX(k, τ)︸ ︷︷ ︸

Sources

PX`(k[τ0 − τ ])︸ ︷︷ ︸
Projection

. (257)

The labels X,Y refer to temperature T and polarization modes E and B (see §17). The integral

(256) relates the inhomogeneities predicted by inflation, P (k), to the anisotropies observed in the

CMB, CXY` . The correlations between the different X and Y modes are related by the transfer

functions ∆X`(k) and ∆Y `(k). The transfer functions may be written as the line-of-sight integral

(257) which factorizes into physical source terms SX(k, τ) and geometric projection factors PX`(k[τ0−
τ ]) (combinations of Bessel functions). A derivation of the source terms and the projection factors is

beyond the scope of this lecture, but may be found in Dodelson’s book [8]. An intuitive explanation

for these results may be found in the animations on Wayne Hu’s website [28].

Our interest in this lecture lies in experimental constraints on the primordial power spectra PR(k)

and Ph(k). To measure the primordial spectra the observed CMB anisotropies CXY` need to be
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deconvolved by taking into account the appropriate transfer functions and projection effects, i.e. for

a given background cosmology we can compute the evolution and projection effects in Eqn. (256)

and therefore extract the inflationary initial conditions P (k). By this deconvolution procedure, the

CMB provides a fascinating probe of the early universe.

Large-scale structure

To study fluctuations in the matter distribution (as measured e.g. by the distribution of galaxies

on the sky) we define the density contrast δ ≡ δρ/ρ̄. We distinguish between fluctuations in the

density of galaxies δg and the dark matter density δ. A common assumption is that galaxies are

(biased) tracers of the underlying dark matter distribution, δg = b δ. If we have an independent

way of determining the bias parameter b, we can use observations of the galaxy density contrast δg
to infer the underlying dark matter distribution δ. The late-time power spectrum of dark matter

density fluctuations is related to the primordial spectrum of curvature fluctuations as follows

Pδ(k, τ) =
4

25

(
k

aH

)4

T 2
δ (k, τ)PR(k) . (258)

The numerical factor and the k-scaling that have been factored out from the transfer function is

conventional. The transfer function Tδ reflects the relative growth of fluctuations during matter

domination, δ ∼ a, and radiation domination, δ ∼ ln a. It usually has to be computed numerically

using codes such as CMBFAST [29] or CAMB [30], however, in §18.1 we will cite useful fitting functions

for Tδ. Again, since for a fixed background cosmology the transfer function can be assumed as given,

observations of the matter power spectrum can be a probe of the initial fluctuations from the early

universe.

17 Review: The Cosmic Microwave Background

We give a very brief review of the physics and the statistical interpretation of CMB fluctuations.

More details may be found in Dodelson’s book [8] or Prof. Pierpaoli’s lectures at TASI 2009.

17.1 Temperature Anisotropies

17.1.1 Harmonic Expansion

Figure 18 shows a map of the measured CMB temperature fluctuations ∆T (n̂) relative to the back-

ground temperature T0 = 2.7 K. Here the unit vector n̂ denotes the direction in sky. The harmonic

expansion of this map is

Θ(n̂) ≡ ∆T (n̂)

T0
=
∑
`m

a`mY`m(n̂) , (259)

where

a`m =

∫
dΩY ∗`m(n̂)Θ(n̂) . (260)

Here, Y`m(n̂) are the standard spherical harmonics on a 2-sphere with ` = 0, ` = 1 and ` =

2 corresponding to the monopole, dipole and quadrupole, respectively. The magnetic quantum
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Figure 18: Temperature fluctuations in the CMB. Blue spots represent directions on the sky where

the CMB temperature is ∼ 10−5 below the mean, T0 = 2.7 K. This corresponds to

photons losing energy while climbing out of the gravitational potentials of overdense

regions in the early universe. Yellow and red indicate hot (underdense) regions. The

statistical properties of these fluctuations contain important information about both

the background evolution and the initial conditions of the universe.

numbers satisfym = −`, . . . ,+`. The multipole moments a`m may be combined into the rotationally-

invariant angular power spectrum

CTT` =
1

2`+ 1

∑
m

〈a∗`ma`m〉 , or 〈a∗`ma`′m′〉 = CTT` δ``′δmm′ . (261)

The angular power spectrum is an important tool in the statistical analysis of the CMB. It describes

the cosmological information contained in the millions of pixels of a CMB map in terms of a much

more compact data representation. Figure 19 shows the most recent measurements of the CMB

angular power spectrum. The figure also shows a fit of the theoretical prediction for the CMB spec-

trum to the data. The theoretical curve depends both on the background cosmological parameters

and on the spectrum of initial fluctuations. We hence can use the CMB as a probe of both.

CMB temperature fluctuations are dominated by the scalar modes R (at least for the values of

the tensor-to-scalar ratio now under consideration, r < 0.3). The linear evolution which relates R
and ∆T is mediated by the transfer function ∆T`(k) through the k-space integral [8]

a`m = 4π(−i)`
∫

d3k

(2π)3
∆T`(k)Rk Y`m(k̂) . (262)

Substituting (262) into (261) and using the identity

∑̀
m=−`

Y`m(k̂)Y`m(k̂′) =
2`+ 1

4π
P`(k̂ · k̂′) , (263)

we find

CTT` =
2

π

∫
k2dk PR(k)︸ ︷︷ ︸

Inflation

∆T`(k)∆T`(k)︸ ︷︷ ︸
Anisotropies

. (264)
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Multipole moment

Figure 19: Angular power spectrum of CMB temperature fluctuations.

The transfer functions ∆T`(k) generally have to be computed numerically using Boltzmann-codes

such as CMBFAST [29] or CAMB [30]. They depend on the parameters of the background cosmology.

Assuming a fixed background cosmology the shape of the power spectrum CTT` contains information

about the initial conditions as described by the primoridial power spectrum PR(k).13 Of course,

learning from observations about PR(k) and hence about inflation is the primary objective of this

lecture.

17.1.2 Large Scales

On large scales, modes were still outside of the horizon at recombination. The large-scale CMB

spectrum has therefore not been affected by subhorizon evolution and is simply the geometric pro-

jection of the primordial spectrum from recombination to us today. In this Sachs-Wolfe regime the

transfer function ∆T`(k) is simply a Bessel function [8]

∆T`(k) =
1

3
j`(k[τ0 − τrec]) . (265)

The angular power spectrum on large scales (small `) therefore is

CTT` =
2

9π

∫
k2dk PR(k) j2

` (k[τ0 − τrec]) . (266)

The Bessel projection function is peaked at k[τ0 − τrec] ≈ ` and so effectively acts like a δ-function

mapping between k and `. Given that modes with wavenumber k ≈ `/(τ0 − τrec) domintate the

integral in Eqn. (266), we can write

CTT` ∝ k3PR(k)
∣∣
k≈`/(τ0−τrec)

∫
d lnx j2

` (x)︸ ︷︷ ︸
∝ `(`+1)

. (267)

13In practice, the CMB data is fit simultaneously to the background cosmology and a spectrum of fluctua-

tions.
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Hence,

`(`+ 1)CTT` ∝ ∆2
s (k)

∣∣
k≈`/(τ0−τrec)

∝ `ns−1 . (268)

For a scale-invariant input spectrum, ns = 1, the quantity

C` ≡
`(`+ 1)

2π
CTT` (269)

is independent of ` (except for a rise at very low ` due to the integrated Sachs-Wolfe effect arising

from the late-time evolution of the gravitational potential in a dark energy dominated universe).

This explains why the CMB power spectrum is often plotted for C` instead of CTT` .

17.1.3 Non-Gaussianity

So far we have shown that the angular power spectrum of CMB fluctuations essentially is a measure

of the primordial power spectrum PR(k) if we take into account subhorizon evolution and geometric

projection effects

〈a∗`ma`′m′〉 = CTT` δ``′δmm′ ⇔ 〈RkRk′〉 = (2π)3PR(k) δ(k + k′) . (270)

If the primordial fluctuations are Gaussian then PR(k) contains all the information. Single-field slow-

roll inflation in fact predicts that R should be Gaussian to a very high degree [24]. However, as we

explain in Lecture 4, even a small amount of non-Gaussianity would provide crucial information

about the inflationary action as it would require to go beyond the simplest single-field slow-roll

models.

The primary measure of non-Gaussianity is the three-point function or equivalently the bispectrum

〈Rk1Rk2Rk3〉 = (2π)3BR(k1, k2, k3) δ(k1 + k2 + k3) . (271)

In the CMB a non-zero bispectrum BR(k1, k2, k3) leaves a signature in the angular bispectrum

B`1`2`3
m1m2m3

= 〈a`1m1a`2m2a`3m3〉 . (272)

Substituting (262) into (272) we may relate the primordial bispectrum to the observed CMB bis-

pectrum [31].14

Note that the primordial bispectrum BR(k1, k2, k3) is a function of three momenta subject only to

momentum conservation (i.e. the three vectors ki form a closed triangle). This makes observational

constraints on non-Gaussianity challenging (there are many different forms of non-Gaussianity to

consider), but also means that if detected non-Gaussianity contains a lot of information about the

physics of the early universe.

A simple model of primoridal non-Gaussianity is local non-Gaussianity defined by a Taylor

expansion of the curvature perturbation around the Gaussian part Rg

R(x) = Rg(x) +
3

5
fRNL ?R2

g(x) . (273)

This is local in real space and the parameter fRNL characterizes the level of non-Gaussianity. The

reader is invited to show that Eqn. (273) implies the following simple form for the bispectrum

BR(k1, k2, k3) =
6

5
fRNL

[
PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)

]
. (274)

14Non-linear evolution can lead to additional non-Gaussianity (see Lecture 4).

73



Present observational constraints on non-Gaussianity are therefore often phrased as constraints on

the parameter fRNL (see §19).

17.2 Polarization

CMB polarization is likely to become one of the most important tools to probe the physics governing

the early universe. In addition to anisotropies in the CMB temperature, we expect the CMB to

become polarized via Thomson scattering [8]. As we now explain, this polarization contains crucial

information about the primordial fluctuations and hence about inflation [7].

Quadrupole
Anisotropy

Thomson 
Scattering

e–

Linear 
Polarization

COLD

HOT

Figure 20: Linear polarization is generation via Thomson scattering of radiation with a quadrupo-

lar anisotropy. Here, the red (thick) lines represent hot radiation and the blue (thin)

line cold radiation.

17.2.1 Polarization via Thomson Scattering

Let us see how polarization is generated by the scattering between photons and free electrons. If

the incident radiation pattern is isotropic (in the rest frame of the electron), then the outgoing

radiation remains unpolarized because orthogonal polarization directions cancel out. A net linear

polarization only arises if the incoming radiation field has a quadrupole component (see Fig. 20).

Such a quadrupole moment is generated when photons decouple from the electrons and protons

just before recombination. Since the temperature anisotropies are created by primordial density

fluctuations, a component of the polarization should be correlated with the temperature anisotropy.

17.2.2 Characterization of the Radiation Field

The mathematical characterization of CMB polarization anisotropies is slightly more involved than

that the description of temperature fluctuations because polarization is not a scalar field so the

standard expansion in terms of spherical harmonics is not applicable.
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The anisotropy field is defined in terms of a 2 × 2 intensity tensor Iij(n̂), where as before n̂

denotes the direction on the sky. The components of Iij are defined relative to two orthogonal

basis vectors ê1 and ê2 perpendicular to n̂. Linear polarization is then described by the Stokes

parameters Q = 1
4(I11 − I22) and U = 1

2I12, while the temperature anisotropy is T = 1
4(I11 + I22).

The polarization magnitude and angle are P =
√
Q2 + U2 and α = 1

2 tan−1(U/Q). The quantity T

is invariant under a rotation in the plane perpendicular to n̂ and hence may be expanded in terms

of scalar (spin-0) spherical harmonics (259). The quantities Q and U , however, transform under

rotation by an angle ψ as a spin-2 field (Q± iU)(n̂)→ e∓2iψ(Q± iU)(n̂). The harmonic analysis of

Q ± iU therefore requires expansion on the sphere in terms of tensor (spin-2) spherical harmonics

[32–34]

(Q± iU)(n̂) =
∑
`,m

a±2,`m ±2Y`m(n̂) . (275)

A description of the mathematical properties of these tensor spherical harmonics, ±2Y`m, would take

us too far off the main track of this lecture, so we refer the reader to the classic papers [32, 33] or

Dodelson’s book [8].

17.2.3 E and B-modes

Instead of the moments a±2,`m it is convenient to introduce the linear combinations

aE,`m ≡ −
1

2
(a2,`m + a−2,`m) , aB,`m ≡ −

1

2i
(a2,`m − a−2,`m) . (276)

Then one can define two scalar (spin-0) fields instead of the spin-2 quantities Q and U

E(n̂) =
∑
`,m

aE,`m Y`m(n̂) , B(n̂) =
∑
`,m

aB,`m Y`m(n̂) . (277)

The scalar quantities E and B completely specify the linear polarization field. E-mode po-

larization is often also characterized as a curl-free mode with polarization vectors that are radial

around cold spots and tangential around hot spots on the sky. In contrast, B-mode polarization is

divergence-free but has a curl: its polarization vectors have vorticity around any given point on the

sky.15 Fig. 21 gives examples of E- and B-mode patterns. Although E and B are both invariant

under rotations, they behave differently under parity transformations. Note that when reflected

about a line going through the center, the E-mode patterns remain unchanged, while the B-moe

patterns change sign.

The symmetries of temperature and polarization (E- and B-mode) anisotropies allow four types

of correlations: the autocorrelations of temperature fluctuations and of E- and B-modes denoted

by TT , EE, and BB, respectively, as well as the cross-correlation between temperature fluctuations

and E-modes: TE. All other correlations (TB and EB) vanish for symmetry reasons.

The angular power spectra are defined as before

CXY` ≡ 1

2`+ 1

∑
m

〈a∗X,`maY,`m〉 , X, Y = T,E,B . (278)

15Evidently the E and B nomenclature reflects the properties familiar from electrostatics, ∇× E = 0 and

∇ ·B = 0.
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E < 0 E > 0

B < 0 B > 0

Figure 21: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across

a line going through the center the E-mode patterns are unchanged, while the positive

and negative B-mode patterns get interchanged.

In Fig. 22 we show the latest measurement of the TE cross-correlation [11]. The EE spectrum has

now begun to be measured, but the errors are still large. So far there are only upper limits on the

BB spectrum, but no detection.
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Figure 22: Power spectrum of the cross-correlation between temperature and E-mode polarization

anisotropies [11]. The anti-correlation for ` = 50− 200 (corresponding to angular sepa-

rations 5◦ > θ > 1◦) is a distinctive signature of adiabatic fluctuations on superhorizon

scales at the epoch of decoupling [35, 36], confirming a fundamental prediction of the

inflationary paradigm.

The cosmological significance of the E/B decomposition of CMB polarization was realized by
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the authors of Refs. [32, 33], who proved the following remarkable facts:

i) scalar (density) perturbations create only E-modes and no B-modes.

ii) vector (vorticity) perturbations create mainly B-modes.16

iii) tensor (gravitational wave) perturbations create both E-modes and B-modes.

The fact that scalars do not produce B-modes while tensors do is the basis for the statement

that detection of B-modes is a smoking gun of tensor modes, and therefore of inflation.

17.2.4 E-modes and Scalars

The power spectrum of E-modes and the TE cross-correlation is dominated by inflationary scalar

modes, i.e.

CEE` ≈ (4π)2

∫
k2dk

Inflation︷ ︸︸ ︷
PR(k) ∆2

E`(k) , (279)

CTE` ≈ (4π)2

∫
k2dk PR(k)︸ ︷︷ ︸

Inflation

∆T`(k)∆E`(k) . (280)

Like CTT` , the spectra CEE` and CTE` provide information about PR(k). However, since the primor-

dial spectrum is convolved with different transfer functions in each case (polarization is generated

only by scattering from free electrons), the signals are usefully complementary.

17.2.5 B-modes and Tensors

B-modes are only generated by tensor modes, i.e.

CBB` = (4π)2

∫
k2dk Ph(k)︸ ︷︷ ︸

Inflation

∆2
B`(k) . (281)

Measuring CBB` is therefore a unique opportunity to access information about primordial tensor

fluctuations.

18 Review: Large-Scale Structure

The galaxy (or dark matter) power spectrum is a measure of the spectrum of primordial curvature

fluctuations

Pδ(k, z) ⇒ PR(k) , (282)

if the effects of subhorizon evolution are accounted for. This is done by the dark matter transfer

function.

16 However, vectors decay with the expansion of the universe and are therefore believed to be subdominant

at recombination. We therefore do not consider them here.
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Figure 23: E- and B-mode power spectra for a tensor-to-scalar ratio saturating current bounds,

r = 0.3, and for r = 0.01. Shown are also the experimental sensitivities for WMAP,

Planck and two different realizations of a future CMB satellite (CMBPol) (EPIC-LC

and EPIC-2m) [37].

18.1 Dark Matter Transfer Functions

Density fluctuations evolve under the competing influence of pressure and gravity. During radia-

tion domination the large radiation pressure prevents the rapid growth of fluctuations; the density

contrast only grows logarithmically, δ ∼ ln a. During matter domination the background pressure is

negligible and gravitational collapse operates more effectively, δ ∼ a.

Under the simplifying assumption that there is no significant growth of perturbations between

the time of horizon entry and matter domination one may derive the following approximate transfer

function

Tδ(k) ≈
{

1 k < keq

(keq/k)2 k > keq
. (283)

Although Eqn. (283) is intuitively appealing for understanding the qualitative shape of the spectrum

(i.e. the break in the spectrum at k ≈ keq), it is not accurate enough for most applications. A famous

fitting function for the matter transfer function was given by Bardeen et al. (BBKS) [38]

Tδ(q) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (1.61q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (284)

where q = k/ΓhMpc−1 and we defined the shape parameter

Γ ≡ Ωh exp(−Ωb −
√

2hΩb/Ω) . (285)

More accurate transfer functions may be found in Eisenstein and Hu [39]. Finally, exact transfer

functions may be computed numerically with CMBFAST [29] or CAMB [30].

For our purposes it is only important to note that (give the background cosmological parame-

ters) the dark matter transfer function can be computed and used to relate the dark matter power

spectrum Pδ(k, z) to the inflationary spectrum PR(k).
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Figure 24: Distribution of galaxies. The Sloan Digital Sky Survey (SDSS) has measured the po-

sitions and distances (redshifts) of nearly a million galaxies. Galaxies first identified

on 2d images, like the one shown above on the right, have their distances measured

to create the 3d map. The left image shows a slice of such a 3d map. The statistical

properties of the measured distribution of galaxies reveal important information about

the structure and evolution of the late time universe.

18.2 Galaxy Bias

With the exception of gravitational lensing we unfortunately can’t observe the dark matter directly.

What we observe (e.g. in galaxy surveys like the Sloan Digital Sky Survey (SDSS)) is luminous

or baryonic matter. On large scales the following phenomenological ansatz for relating the galaxy

distribution and the dark matter has proven useful

δg = b δ , (286)

or

Pδg = b2Pδ . (287)

Here, b is called the (linear) bias parameter. It may be viewed as a parameter describing the ill-

understood physics of galaxy formation. The bias parameter b can be obtained by measuring the

galaxy bispectrum Bδg .

Modulo these complications the galaxy power spectrum Pδg(k) is an additional probe of infla-

tionary scalar fluctuations PR(k). As it probes smaller scales it is complementary to observations

of the CMB fluctuations.
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19 Current Evidence for Inflation

Inflation is a hypothesis. In order to increase our confidence that inflation describes the physical

reality of the early universe, we compare the predictions of inflation to cosmological observations.

In this section we describe the current observational evidence for inflation, before discussing future

tests in the next section.

19.1 Flatness

The universe is filled with baryons, dark matter, photons, neutrinos and dark energy

Ωtot = Ωb + Ωcdm + Ωγ + Ων + ΩΛ . (288)

The value of Ωtot determines the spatial geometry of the universe with Ωtot = 1 corresponding to a

flat universe, Ωtot < 1 to a negatively curved universe and Ωtot > 1 to a positively curved universe.

Inflation predicts

Ωtot = 1± 10−5 , (289)

while the data shows [11]

Ωtot = 1± 0.02 . (290)

Although this agreement between theory and data is impressive, one could argue that inflation

achieves the flatness of the universe somewhat ‘by design’.17 We should therefore search for additional

tests of the inflationary idea.

19.2 Coherent Phases and Superhorizon Fluctuations

As we have repeatedly emphasized in these lectures, the observations of the inhomogeneous universe

allow detailed test of the inflationary dynamics. In this subsection, we discuss non-trivial qualitative

features of the observations that inflation explains naturally, before giving quantitative results in

the next subsection.

The following is a trivialization of arguments that have been explained beautifully by Dodelson

in [36].

19.2.1 The Peaks of the TT Spectrum

Inflation produces a nearly scale-invariant spectrum of perturbations,

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) , (291)

where k3PR(k) ∝ kns−1 with ns ≈ 1.

You might think then that the shape of the power spectrum can be measured in obser-

vations, and this is what convinces us that inflation is right. Well, it is true that we can

measure the power spectrum, both of the matter and of the radiation, and it is true that

17However, it is worth pointing out that when Guth introduced inflation in 1980, the flatness of the universe

was a non-trivial prediction that at the time was inconsistent with observations!
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the observations agree with the theory. But this is not what tingles our spines when we

look at the data. Rather, the truly striking aspect of perturbations generated during

inflation is that all Fourier modes have the same phase [36].

Consider a Fourier mode with physical wavelength λ. While the mode is inside the horizon during

inflation it oscillates with a frequency given by k = 2π/λ. However, before inflation ends, the mode

exits the horizon, i.e. its physical wavelength gets stretched to a length greater than the instantaneous

Hubble radius, λ > H−1. After that its amplitude remains constant. Only at a much later time

when the mode re-enters the horizon can causal physics affect it and lead to a time-evolution. Since

the fluctuation amplitude was constant outside the horizon, Ṙ is very small at horizon re-entry. In

general, each Fourier mode could be a linear combination of a sine and a cosine mode. However, the

special feature of inflation is that excites only the cosine mode (defining horizon re-entry as t ≡ 0).

Once inside the horizon the curvature perturbation R sources density fluctuations δ which evolve

under the influence of gravity and pressure

δ̈ − c2
s∇2δ = Fg[R] , (292)

where cs is the sound speed and Fg is the gravitational source term. This leads to oscillations

in the density field. In the plasma of the early universe, fluctuations in the matter density were

strongly coupled to fluctuations in the radiation. The CMB fluctuations therefore provide a direct

snapshot of the conditions of the underlying density field at the time of recombination. Imagine

that recombination happens instantaneously (this is not a terrible approximation). Fluctuations

with different wavelengths would be captured at different phases in their oscillations. Modes of

a certain wavelength would be captured at maximum or minimum amplitude, while others would

be captured at zero amplitude. If all Fourier modes of a given wavelength had the same phases

they would interfere coherently and the spectrum of all Fourier would produce a series of peaks

and troughs in the CMB power spectrum as seen on the last-scattering surface. This is of course

what we see in Fig. 18. However, in order for the theory of initial fluctuations to explain this it

needs to involve a mechanism that produces coherent initial phases for all Fourier modes. Inflation

does precisely that! Because fluctuations freeze when the exit the horizon the phases for the Fourier

modes were set well before the modes of interest entered the horizon. When were are admiring the

peak structure of the CMB power spectrum we are really admiring the ability of the primordial

mechanism for generating flucutations to coordinate the phases of all Fourier modes. Without this

coherence, the CMB power spectrum would simply be white noise with no peaks and troughs (in

fact, this is precisely why cosmic strings or topological defects are ruled out at the primary sources

for the primordial fluctuations.).

19.2.2 ` < 100 in the TE Spectrum

The skeptic might not be convinced by the above argument. The peaks and troughs of the CMB

temperature fluctuation spectrum are at ` > 200 corresponding to angular scales θ < 1◦. All of these

scales were within the horizon at the time of recombination. So it is in principle possible (and people

have tried in the 90s) to engineer a theory of structure formation which obeys causality and still

manages to produce only the ‘cosine mode’. Such a theory would explain the CMB peaks without

appealing to inflation. This doesn’t sound like the most elegant thing in the world but it can’t be

excluded as a logical possibility.
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Figure 25: Evolution of modes with the same wavelength. Recombination is at τ = τrec. The left

figure illustrates the wavelength corresponding to the first peak in the CMB angular

power spectrum, while the right figure shows the wavelength corresponding to the first

trough. Since all modes start with the same phase, the ones on the left all reach

maximum amplitude at recombination, while the ones on the right all go to zero at

recombination. This explains to the peaks of the CMB power spectrum.
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Figure 26: Modes corresponding to the same two wavelengths as in Fig. 25, but this time with

random initial phases. We see that the angular peak structure of the CMB would be

washed away.

However, we now show that when considering CMB polarization, then even these highly-tuned

alternatives to inflation can be ruled out. Looking at Fig. 22 we see that the cross-correlation

between CMB temperature fluctuations and the E-mode polarization has a negative peak around

100 < ` < 200. This anti-correlation signal is also the result of phase coherence, but now the scales

involved were not within the horizon at recombination. Hence, there is no causal mechanism (after

τ = 0) that could have produced this signal. One is almost forced to consider something like inflation

with its shrinking comoving horizon leading to horizon exit and re-entry.18

18It should be mentioned here that there are two ways to get a shrinking comoving Hubble radius, 1/(aH).

During inflation H is nearly constant and the scale factor a grows exponentially. However, in a contracting
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As Dodelson explains [36]

At recombination, [the phase difference between the monopole (sourcing T ) and the

dipole (sourcing E) of the density field] causes the product of the two to be negative for

100 < ` < 200 and positive on smaller scales until ` ∼ 400. But this is precisely what

WMAP has observed! We have clear evidence that the monopole and the dipole were

out of phase with each other at recombination.

This evidence is exciting for the small scale modes (` > 200). Just as the acoustic

peaks bear testimony to coherent phases, the cross-correlation of polarization and tem-

peratures speaks to the coherence of the dipole as well. It solidifies our picture of the

plasma at recombination. The evidence from the larger scale modes (` < 200) though is

positively stupendous. For, these modes were not within the horizon at recombination.

So the only way they could have their phases aligned is if some primordial mechanism

did the job, when they were in causal contact. Inflation is just such a mechanism.

19.3 Scale-Invariant, Gaussian and Adiabatic

We now describe quantitative constraints on the primordial fluctuations. The simplest versions of

inflation predict that the scalar perturbations are nearly scale-invariant, Gaussian and adiabatic.

In this section we give the latest quantitative constraints on these fundamental predictions of the

theory.

Parameter 5-year WMAP WMAP+BAO+SN

ns 0.963+0.014
−0.015 0.960+0.013

−0.013

ns 0.986± 0.022 0.970± 0.015

r < 0.43 < 0.22

ns 1.031+0.054
−0.055 1.017+0.042

−0.043

αs −0.037± 0.028 −0.028+0.020
−0.020

ns 1.087+0.072
−0.073 1.089+0.070

−0.068

r < 0.58 < 0.55

αs −0.050± 0.034 −0.058± 0.028

Table 3: 5-year WMAP constraints on the primordial power spectra in the power law parameter-

ization [11]. We present results for (ns), (ns, r), (ns, αs) and (ns, r, α) marginalized over

all other parameters of a flat ΛCDM model.

spacetime a shrinking horizon can be achieved if H grows with time. This is the mechanism employed by

ekpyrotic/cyclic cosmology [40–42]. When viewed in terms of the evolution of the comoving Hubble scale

inflation and ekpyrosis appear very similar, but there are important differences, e.g. in ekyprosis it is a

challenge to match the contracting phase to our conventional Big Bang expansion.
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19.3.1 Spectral Index

As we explained in detail above, observations of the CMB relate to the inflationary spectrum of

curvature perturbations R
CTT` , CTE` , CEE` ⇒ PR(k) . (293)

Here, we present the latest quantitative constraints on PR(k) in the standard power-law parameter-

ization

∆2
s (k) ≡ k3

2π2
PR(k) = As

(
k

k?

)ns−1

. (294)

Measurements of ns are degenerate with the tensor-to-scalar ratio r so constraints on ns are often

shown as confidence contours in the ns-r plane. The latest WMAP 5-year constraints on the scalar

spectral index are shown in Fig. 27 and Table 3. Two facts may be noted: i) the spectrum is nearly

scale-invariant, ns ≈ 1, just as inflation predicts and ii) there are already interesting indications

that the spectrum is not perfectly scale-invariant, but slightly red, ns < 1. This deviation from

scale-invariance provides the first test of the detailed time-dependence of the inflationary expansion.

In fact, as we have seen in Lecture 2, inflation predicts this percent level deviation from scale-

invariance.19

Figure 27: WMAP 5-year constraints on the inflationary parameters ns and r [11]. The WMAP-

only results are shown in blue, while constraints from WMAP plus other cosmological

observations are in red. The third plot assumes that r is negligible.

19.3.2 Gaussianity

If R is Gaussian then the power spectrum PR(k) (two-point correlations in real space) is the end

of the story. However, if R is non-Gaussian then the fluctuations have a non-zero bispectrum

BR(k1, k2, k3) (corresponding to three-point correlations in real space). There is only one way to be

Gaussian but many ways to be non-Gaussian, so constraints on non-Gaussianity are a bit hard to

describe. One of the simplest forms of non-Gaussianity is described by the parameterization

R(x) = Rg(x) +
3

5
fNL ?R2

g(x) . (295)

19For inflation to end, the Hubble parameter H has to change in time. This time-dependence changes

the conditions at the time when each fluctuation mode exits the horizon and therefore gets translated into a

scale-dependence of the fluctuations.
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where Rg is Gaussian. In this local model for non-Gaussianity, the information is reduced to a single

number fNL. The latest constraint on fNL by Smith, Senatore, and Zaldarriaga [43] is

− 4 < fNL < 80 at 95% CL . (296)

Notice that an fNL value of order 100 corresponds to a 0.1% correction to Rg ∼ 10−5 in Eq. (295).

The constraint (296) therefore implies that the CMB is Gaussian to 0.1%! This is better than our

constraint on the curvature of the universe which is usually celebrated as the triumph of inflation.

The CMB is highly Gaussian and it didn’t have to be that way. However, if inflation is correct then

the observed Gaussianity is a rather natural consequence.20

19.3.3 Adiabaticity

In single-field inflation, the fluctuations of the inflaton field on large scales (where spatial gradients

can be neglected) can be identified with a local shift backwards or forwards along the the trajectory

of the homogeneous background field. These shifts along the inflaton trajectory affect the total

density in different parts of the universe after inflation, but cannot give rise to variations in the

relative density between different components. Hence, single-field inflation produces purely adiabatic

primordial density perturbations characterized by an overall curvature perturbations, R. This means

that all perturbations of the cosmological fluid (photons, neutrinos, baryons and cold dark matter

(CDM) particles) originate from the same curvature perturbation R and satisfy the adiabaticity

property, δ(nm/nr) = 0, or
δρm
ρm

=
3

4

δρr
ρr

, (297)

where the index m collectively stands for non-relativistic species (baryons or CDM) and r for rel-

ativistic species (photons or neutrinos). The latest data shows no violation of the condition (297)

[11]. If such a violation were to be found this would be a clear signature of multi-field inflation (see

§20.5).

19.4 Testing Slow-Roll Models

In Figure 28 we present current observational constraints on some of the simplest single-field slow-roll

models of inflation (see Lecture 1). Future measurements will significantly cut into the parameter

space of allowed models.

20 Future Tests of Inflation

We are only at the beginning of really testing the inflationary paradigm. The flatness of the universe

and the near scale-invariance, Gaussianity and adiabaticity of the density fluctuations are encourag-

ing evidence for inflation21, but they are not proof that inflation really occurred.22 Let us therefore

20Non-Gaussianity is a measure of interactions of the inflaton field. However, for slow-roll dynamics to

occur, the inflaton has to be very weakly self-interacting (the potential is very flat) and the non-Gaussianity

is necessarily small, fNL ∼ O(0.01) [24].
21Note that at any stage we could have made measurements that would have falsified the whole idea of

inflation.
22I know, I used the word ‘proof’ when Karl Popper taught us that we can never prove a theory.
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Figure 28: Constraints on single-field slow-roll models in the ns-r plane. The value of r determines

whether the models involve large or small field variations. The value of ns classifies

the scalar spectrum as red or blue. Combinations of the values of r and ns determine

whether the curvature of the potential was positive (ηv > 0) or negative (ηv < 0)

when the observable universe exited the horizon. Also shown are the WMAP 5-year

constraints on ns and r [11] as well as the predictions of a few representative models of

single-field slow-roll inflation: chaotic inflation: λp φ
p, for general p (thin solid line) and

for p = 4, 3, 2, 1, 2
3(•); models with p = 2 [44], p = 1 [45] and p = 2

3 [46] have recently

been obtained in string theory; natural inflation: V0[1 − cos(φ/µ)] (solid line); very

small-field inflation: models of inflation with a very small tensor amplitude, r � 10−4

(green bar); examples of such models in string theory include warped D-brane inflation

[47–49], Kähler inflation [50], and racetrack inflation [51].

look into the future and describe how future experiments can provide further tests of inflationary

physics.

20.1 Amplitude of Tensor Modes

Probably the single most important piece of evidence for inflation would come from a measurement

of a primordial tensor amplitude. We showed above that a detection of primordial CMB B-modes

would be virtually impossible to explain by anything other inflationary gravitational waves [52]

CBB` ⇒ Ph(k) , (298)

where

∆2
t (k) ≡ k3

2π2
Ph(k) = At

(
k

k?

)nt

. (299)

We also explained in Lecture 2 that the tensor amplitude At is directly linked with the energy

scale of inflation. As a single clue about the physics of inflation, what could be more important

and higher on the wish-list of inflationary theorists? In addition, a detection of tensor modes would
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imply that the inflaton field moved over a super-Planckian distance in field space, making string

theorists and quantum gravity affectionatos think hard about Planck-suppressed corrections to the

inflaton potential (see Lecture 5).

20.2 Scale Dependence of Scalar Modes

The variation of the spectral index ns with scale (also called the “running” of the spectral index)

arises only at second-order in slow-roll and is therefore expected to be small

αs ≡
dns

d ln k
∼ O(ε2) . (300)

On the other hand, an unexpected large positive or negative running would force us to rethink some

of our simplest notions about inflation and the generation of perturbations.

20.3 Scale Dependence of Tensor Modes

Measuring the amplitude of primordial tensor fluctuations from inflation will be a significant obser-

vational challenge. Hoping to measure its dependence on scale seems unrealistic unless the tensor

amplitude is near its current upper limit. In single-field slow-roll models the tensor-to-scalar ratio r

and the tensor spectral index nt are related by the consistency relation

r = −8nt . (301)

Measuring (301) would offer another way to falsify single-field slow-roll inflation.

20.4 Non-Gaussianity

The primordial fluctuations are to a high degree Gaussian. However, as we now describe, even a small

non-Gaussianity would encode a tremendous amount of information about the inflationary action.

We mentioned that the three-point function of inflationary fluctuations is the prime diagnostic of

non-Gaussian statistics. In momentum space, the three-point correlation function can be written

generically as

〈Rk1Rk2Rk3〉 = (2π)3 δ(k1 + k2 + k3) fNL F (k1, k2, k3) . (302)

Here, fNL is a dimensionless parameter defining the amplitude of non-Gaussianity, while the function

F (k1, k2, k3) captures the momentum dependence. The amplitude and sign of fNL, as well as the

shape and scale dependence of F (k1, k2, k3), depend on the details of the interaction generating the

non-Gaussianity, making the three-point function a powerful discriminating tool for probing models

of the early universe [31].

Two simple and distinct shapes F (k1, k2, k3) are generated by two very different mechanisms [53]:

The local shape is a characteristic of multi-field models and takes its name from the expression for

the primordial curvature perturbation R in real space,

R(x) = Rg(x) +
3

5
f local

NL Rg(x)2 , (303)
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where Rg(x) is a Gaussian random field. Fourier transforming this expression shows that the signal

is concentrated in “squeezed” triangles where k3 � k1, k2. Local non-Gaussianity arises in multi-

field models where the fluctuations of an isocurvature field (see below) are converted into curvature

perturbations. As this conversion happens outside of the horizon, when gradients are irrelevant,

one generates non-linearities of the form (303). Specific models of this type include multi-field

inflation [54–66], the curvaton scenario [67, 68], inhomogeneous reheating [69, 70], and New Ekpyrotic

models [71–77].

The second important shape is called equilateral as it is largest for configurations with k1 ∼ k2 ∼
k3. The equilateral form is generated by single-field models with non-canonical kinetic terms such as

DBI inflation [78], ghost inflation [79, 80] and more general models with small sound speed [81, 82].

20.5 Isocurvature Fluctuations

In inflationary models with more than one field the perturbations are not necessarily adiabatic. With

more than one field, fluctuations orthogonal to the background trajectory can affect the relative den-

sity between different matter components even if the total density and therefore the spatial curvature

is unperturbed [83]. There are various different possibilities for such isocurvature perturbations (also

called non-adiabitic or entropic perturbations), e.g. we may define relative perturbations between

CDM and photons

Sm ≡
δρm
ρm
− 3

4

δργ
ργ

. (304)

Adiabatic and isocurvature perturbations lead to a different peak structure in the CMB fluctuations.

CMB measurements can therefore distinguish between the different types of fluctuations and in fact

already show that isocurvature perturbations have to be a subdominant component (if at all present).

Isocurvature perturbations could be correlated with the adiabatic perturbations. To capture this

we define the following correlation parameter

β ≡ PSR√
PSPR

, (305)

where PR and PS are the power spectra of adiabatic and isocurvature fluctuations and PSR is their

cross-correlation. Parameterizing the relative amplitude between the two types of perturbations by

a coefficient α
PS
PR
≡ α

1− α , (306)

the present constraints on the isocurvature contribution are α0 < 0.067 (96% CL) in the uncorrelated

case (β = 0) and α−1 < 0.0037 (95% CL) in the totally anti-correlated case (β = −1).

Theoretical predictions for the amplitude of isocurvature perturbations are complicated by the

fact that they are strongly model-dependent: the isocurvature amplitude does not depend entirely

on the multi-field inflationary dynamics, but also on the post-inflationary evolution. If all particle

species are in thermal equilibrium after inflation and their local densities are uniquely given by their

temperature (with vanishing chemical potential) then the primordial perturbations are adiabatic

[84, 85]. Thus, it is important to note that the existence of primordial isocurvature modes requires at

least one field to decay into some species whose abundance is not determined by thermal equilibrium

(e.g. CDM after decoupling) or respects some conserved quantum numbers, like baryon or lepton

numbers.
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21 Summary: Lecture 3

Observations of the cosmic microwave background (CMB) and the large-scale structure (LSS) may

be used to constrain the spectrum of primordial seed fluctuations. This makes CMB and LSS

experiments probes of the early universe. To extract this information about the inflationary era the

late-time evolution of fluctuations has to be accounted for. This is done with numerical codes such

as CMBFAST and CAMB.

Current observations are in beautiful agreement with the basic inflationary predictions: The uni-

verse is flat with a spectrum of nearly scale-invariant, Gaussian and adiabatic density fluctuations.

The fluctuations show non-zero correlations on scales that were bigger than the horizon at recombi-

nation. Furthermore, the peak structure of the CMB spectrum is evidence that the fluctuations we

created with coherent phases.

Future tests of inflation will mainly come from measurements of CMB polarization. B-modes of

CMB polarization are a unique signature of inflationary gravitational waves. The B-mode amplitude

is a direct measure of the energy scale of inflation. In addition, measurements of non-Gaussianty

potentially carry a wealth of information about the physics of inflation by constraining interactions

of the inflaton field.

Finally, the following measurements would falsify single-field slow-roll inflation:

• Large non-Gaussianity, fNL > 1.

• Non-zero isocurvature perturbations, α 6= 0.

• Large running of the scalar spectrum, |αs| > 0.001.

• Violation of the tensor consistency relation, r 6= −8nt.
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Part V

Lecture 4: Primordial

Non-Gaussianity

Abstract

In this lecture we summarize key theoretical results in the study of primordial non-

Gaussianity. Most results are stated without proof, but their significance for constrain-

ing the fundamental physical origin of inflation is explained. After introducing the

bispectrum as a basic diagnostic of non-Gaussian statistics, we show that its momen-

tum dependence is a powerful probe of the inflationary action. Large non-Gaussianity

can only arise if inflaton interactions are significant during inflation. In single-field slow-

roll inflation non-Gaussianity is therefore predicted to be unobservably small, while it

can be significant in models with multiple fields, higher-derivative interactions or non-

standard initial states. Finally, we end the lecture with a discussion of the observational

prospects for detecting or constraining primordial non-Gaussianity.

22 Preliminaries

Non-Gaussianity, i.e. the study of non-Gaussian contributions to the correlations of cosmological

fluctuations, is emerging as an important probe of the early universe [86]. Being a direct mea-

sure of inflaton interactions, constraints on primordial non-Gaussianities will teach us a great deal

about the inflationary dynamics. It also puts strong constraints on alternatives to the inflationary

paradigm [71–77].

In Lecture 2 we expanded the inflationary action to second order in the comoving curvature

perturbation R. This free-field action allowed us to compute the power spectrum PR(k). As we

mentioned in Lecture 3, if the fluctuations R are drawn from a Gaussian distribution, then the

power spectrum (or two-point correlation function) contains all the information.23 However, for

non-Gaussian fluctuations higher-order correlation functions beyond the two-point function contain

additional information about inflation. Computing the leading non-Gaussian effects requires expan-

sion of the action to third order in order to capture the leading non-trivial interaction terms. These

computations can be algebraically quite challenging, so we will limit this lecture to a review of the

main results and their physical interpretations. For more details and derivations we refer the reader

to the comprehensive review by Bartolo et al. [31] and the references cited therein.

23The three-point function and all odd higher-point correlation functions vanish for Gaussian fluctuations,

while all even higher-point functions can be expressed in terms of the two-point function. In other words, all

connected higher-point functions vanish for Gaussian fluctuations.
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22.1 The Bispectrum and Local Non-Gaussianity

22.1.1 Bispectrum

The Fourier transform of the two-point function is the power spectrum

〈Rk1Rk2〉 = (2π)3δ(k1 + k2)PR(k1) . (307)

Similarly, the Fourier equivalent of the three-point function is the bispectrum

〈Rk1Rk2Rk3〉 = (2π)3δ(k1 + k2 + k3)BR(k1,k2,k3) . (308)

Here, the delta function (enforcing momentum conservation) is a consequence of translation invari-

ance of the background. The function BR is symmetric in its arguments and for scale-invariant

fluctuations it is a homogeneous function of degree −6

BR(λk1, λk2, λk3) = λ−6BR(k1,k2,k3) . (309)

Rotational invariance further reduces the number of independent variables to just two, e.g. the two

ratios k2/k1 and k3/k1.

To compute the three-point function for a specific inflationary model requires a careful treat-

ment of the time-evolution of the vacuum in the presence of interactions (while for the two-point

function this effect is higher-order). In Appendix C we describe the “in-in” formalism for computing

cosmological correlation functions [24, 87–90]. In practice, computing three-point functions can be

algebraically very cumbersome, so in the lecture we restrict us to citing the final results. The details

on how to compute these three-point functions deserves a review of its own.

22.1.2 Local Non-Gaussianity

One of the first ways to parameterize non-Gaussianity phenomenologically was via a non-linear

correction to a Gaussian perturbation Rg [91],

R(x) = Rg(x) +
3

5
f local

NL

[
Rg(x)2 − 〈Rg(x)2〉

]
. (310)

This definition is local in real space and therefore called local non-Gaussianity. Experimental

constraints on non-Gaussianity (see Lecture 3) are often set on the parameter f local
NL defined via

Eqn. (310).24 Using Eqn. (310) the bispectrum of local non-Gaussianity may be derived

BR(k1, k2, k3) =
6

5
f local

NL × [PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)] . (311)

Exercise 10 (Local Bispectrum) Derive Eqn. (311) from Eqns. (308) and (310).

24The factor of 3/5 in Eqn. (310) is conventional since non-Gaussianity was first defined in terms of the

Newtonian potential, Φ(x) = Φg(x) + f localNL

[
Φg(x)2 − 〈Φg(x)2〉

]
, which during the matter era is related to R

by a factor of 3/5.
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For a scale-invariant spectrum, PR(k) = Ak−3, this is

BR(k1, k2, k3) =
6

5
f local

NL ×A2

[
1

(k1k2)3
+

1

(k2k3)3
+

1

(k3k1)3

]
. (312)

Without loss of generality, let us order the momenta such that k3 ≤ k2 ≤ k1. The bispectrum

for local non-Gaussianity is then largest when the smallest k (i.e. k3) is very small, k3 � k1 ∼ k2.

The other two momenta are then nearly equal. In this squeezed limit, the bispectrum for local

non-Gaussianity becomes

lim
k3�k1∼k2

BR(k1, k2, k3) =
12

5
f local

NL × PR(k1)PR(k3) . (313)

22.2 Shapes of Non-Gaussianity

The delta function in Eqn. (308) enforces that the three Fourier modes of the bispectrum form a

closed triangle. Different inflationary models predict maximal signal for different triangle configu-

rations. This shape of non-Gaussianity [53] is potentially a powerful probe of the mechanism that

laid down the primordial perturbations.

It will be convenient to define the shape function

S(k1, k2, k3) ≡ N(k1k2k3)2BR(k1, k2, k3) , (314)

where N is an appropriate normalization factor. Two commonly discussed shapes are the local

model, cf. Eqn. (312),

S local(k1, k2, k3) ∝ K3

K111
, (315)

and the equilateral model,

Sequil(k1, k2, k3) ∝ k̃1k̃2k̃3

K111
. (316)

Here, we have introduced a notation first defined by Fergusson and Shellard [92],

Kp =
∑
i

(ki)
p with K = K1 (317)

Kpq =
1

∆pq

∑
i 6=j

(ki)
p(kj)

q (318)

Kpqr =
1

∆pqr

∑
i 6=j 6=l

(ki)
p(kj)

q(kl)
q (319)

k̃ip = Kp − 2(ki)
p with k̃i = k̃i1 , (320)

where ∆pq = 1 + δpq and ∆pqr = ∆pq(∆qr + δpr) (no summation). This notation significantly

compresses the increasingly complex expressions for the bispectra discussed in the literature.

We have argued above that for scale-invariant fluctuations the bispectrum is only a function of

the two ratios k2/k1 and k3/k1. We hence define the rescaled momenta

xi ≡
ki
k1
. (321)
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We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In

the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.

To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular

region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at

x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different

triangle shapes are distributed in the x2-x3 plane.
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Figure 29: 3D plots of the local and equilateral bispectra. The coordinates x2 and x3 are the

rescaled momenta k2/k1 and k3/k1, respectively. Momenta are order such that x3 <

x2 < 1 and satsify the triangle inequality x2 + x3 > 1.
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Figure 30: Shapes of Non-Gaussianity. The coordinates x2 and x3 are the rescaled momenta k2/k1

and k3/k1, respectively. Momenta are order such that x3 < x2 < 1 and satsify the

triangle inequality x2 + x3 > 1.
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Figure 31: Contour plot of the local bispectrum.
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Figure 32: Contour plot of the equilateral bispectrum.

Physically motivated models for producing non-Gaussian perturbations often produce signals

that peak at special triangle configurations. Three important special cases are:

i) squeezed triangle (k1 ≈ k2 � k3)

This is the dominant mode of models with multiple light fields during inflation [54–66], the

curvaton scenario [67, 68], inhomogeneous reheating [69, 70], and New Ekpyrotic models [71–

77].

ii) equilateral triangle (k1 = k2 = k3)

Signals that peak at equilateral triangles arise in models with higher-derivative interactions

and non-trivial speeds of sound [82, 93].

iii) folded triangle (k1 = 2k2 = 2k3)

Folded triangles arise in models with non-standard initial states [82, 94].

In addition, there are the intermediate cases: elongated triangles (k1 = k2 + k3) and isosceles

triangles (k1 > k2 = k3).
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22.3 fNL: The Amplitude of Non-Gaussianity

For arbitrary shape functions we measure the magnitude of non-Gaussianity by defining the gener-

alized fNL parameter

fNL ≡
5

18

BR(k, k, k)

PR(k)2
. (322)

In this definition the amplitude of non-Gaussianity is normalized in the equilateral configuration.

Exercise 11 (fNL) Show from Eqn. (311) that the definition (322) is consistent with our definition

of f local
NL , Eqn. (310).

23 Theoretical Expectations

23.1 Single-Field Slow-Roll Inflation

Successful slow-roll inflation demands that the interactions of the inflaton field are weak. Since the

wave function of free fields in the ground state is Gaussian, the fluctuations created during slow-roll

inflation are expected to be Gaussian. Maldacena [24] first derived the bispectrum for slow-roll (SR)

inflation

SSR(k1, k2, k3) ∝ (ε− 2η)
K3

K111
+ ε

(
K12 + 8

K22

K

)
(323)

≈ (4ε− 2η)S local(k1, k2, k3) +
5

3
εSequil(k1, k2, k3) , (324)

where S local and Sequil are normalized so that S local(k, k, k) = Sequil(k, k, k). The bispectrum for

slow-roll inflation peaks at squeezed triangles and has an amplitude that is suppressed by slow-roll

parameters [24]

fSR
NL = O(ε, η) . (325)

This makes intuitive sense since the slow-roll parameters characterize deviations of the inflaton from

a free field.

23.2 The Maldacena Theorem

Under the assumption of single-field inflation, but no other assumptions about the inflationary

action, Creminelli and Zaldarriaga [95] were able to prove a powerful theorem:

lim
k3→0
〈Rk1Rk2Rk3〉 = (2π)3δ(k1 + k2 + k3) (1− ns)PR(k1)PR(k3) , (326)

where

〈RkiRkj 〉 = (2π)3δ(ki + kj)PR(ki) . (327)

Eqn. (326) states that for single-field inflation, the squeezed limit of the three-point function is

suppressed by (1− ns) and vanishes for perfectly scale-invariant perturbations. A detection of non-

Gaussianity in the squeezed limit can therefore rule out single-field inflation! In particular, this
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statement is independent of: the form of the potential, the form of the kinetic term (or sound speed)

and the initial vacuum state.

Proof:

The squeezed triangle correlates one long-wavelength mode, kL = k3 to two short-wavelength

modes, kS = k1 ≈ k2,

〈Rk1Rk2Rk3〉 ≈ 〈(RkS
)2RkL

〉 . (328)

Modes with longer wavelengths freeze earlier. Therefore, kL will be already frozen outside the horizon

when the two smaller modes freeze and acts as a background field for the two short-wavelength modes.

Why should (RkS
)2 be correlated with RkL

? The theorem says that “it isn’t correlated if Rk is

precisely scale-invariant”. The proof is simplest in real-space (see Creminelli and Zaldarriaga [95]):

The long-wavelength curvature perturbation RkL
rescales the spatial coordinates (or changes the

effective scale factor) within a given Hubble patch

ds2 = −dt2 + a(t)2e2Rdx2 . (329)

The two-point function 〈Rk1Rk2〉 will depend on the value of the background fluctuations RkL

already frozen outside the horizon. In position space the variation of the two-point function given

by the long-wavelength fluctuations RL is at linear order

∂

∂RL
〈R(x)R(0)〉 · RL = x

d

dx
〈R(x)R(0)〉 · RL . (330)

To get the three-point function Creminelli and Zaldarriaga multiply Eqn. (330) by RL and average

over it. Going to Fourier space gives Eqn. (326).25 QED.

23.3 Models with Large Non-Gaussianity

23.3.1 Higher-Derivative Interactions

Although Maldacena proved that for single-field slow-roll inflation non-Gaussianity is always small,

single-field models can still give large non-Gaussianity if higher-derivative terms are important during

inflation (as opposed to assuming a canonical kinetic term and no higher-derivative corrections as

in slow-roll inflation). Consider the following action

S =
1

2

∫
d4x
√−g [R− P (X,φ)] , where X ≡ (∂µφ)2 . (331)

Here, P (X,φ) is an arbitrary function of the kinetic term X = (∂µφ)2 and hence can contain higher-

derivative interactions. These models in general have a non-trivial sound speed for the propagation

of fluctuations

c2
s ≡

P,X
P,X + 2XP,XX

. (332)

The second-order action for R (giving PR) is [82]

S(2) =

∫
d4x ε

[
a3(Ṙ)2/c2

s − a(∂iR)2
]

+O(ε2) (333)

25For more details see Cheung et al. [96].
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The third-order action for R (giving BR; see Appendix C and Ref. [82]) is

S(3) =

∫
d4x ε2

[
. . . a3(Ṙ)2R/c2

s + . . . a(∂iR)2R+ . . . a3(Ṙ)3/c2
s

]
+O(ε3) (334)

We notice that the third-order action is surpressed by an extra factor of ε relative to the second-

order action. This is a reflection of the fact that non-Gaussianity is small in the slow-roll limit:

P (X,φ) = X−V (φ), c2
s = 1. However, away from the slow-roll limit, for small sound speeds, c2

s � 1,

a few interaction terms in Eqn. (334) get boosted and non-Gaussianity can become significant. The

signal is peaked at equilateral triangles, with

f equil
NL = − 35

108

(
1

c2
s

− 1

)
+

5

81

(
1

c2
s

− 1− 2Λ

)
, (335)

where

Λ ≡ X2P,XX + 2
3X

3P,XXX

XP,X + 2X2P,XX
. (336)

Whether actions with arbitrary P (X,φ) exist in consistent high-energy theories is an important

challenge for these models. It is encouraging that one of the most interesting models of inflation in

string theory, DBI inflation [93] (see Lecture 5), has precisely such a structure with

PDBI(X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ) . (337)

In this case, the second term in Eqn. (338) is identically zero and we find

fDBI
NL = − 35

108

(
1

c2
s

− 1

)
. (338)

The shape function for DBI inflation is

SDBI(k1, k2, k3) ∝ 1

K111K2
(K5 + 2K14 − 3K23 + 2K113 − 8K122) . (339)

23.3.2 Multiple Fields

In single-field slow-roll inflation interactions of the inflaton are constrained by the requirement that

inflation should occur. However, if more than one field was relevant during inflation this constraint

may be circumvented. Models like the curvaton mechanism [67, 68] or inhomogeneous reheating

[69, 70] exploit this to create non-Gaussian fluctuations via fluctuations is a second field that is not

the inflaton. The signal is peaked at squeezed triangles.

For more details on these mechanisms to produce local-type non-Gaussianity we refer the reader

to the review by Bartolo et al. [31].

23.3.3 Non-Standard Vacuum

If inflation started in an excited state rather than in the Bunch-Davies vacuum, remnant non-

Gaussianity may be observable [94] (unless inflation lasted much more than the minimal number of

e-folds, in which case the effect is exponentially diluted). The signal is peaked at folded triangles

with a shape function

S folded(k1, k2, k3) ∝ 1

K111
(K12 −K3) + 4

K2

(k̃1k̃2k̃3)2
. (340)

For a more detailed discussion of this effect the reader may consult the paper by Holman and

Tolley [94].
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24 Observational Prospects

Observational constraints on primordial non-Gaussianity are beginning to reach interesting levels.

Precision CMB experiments now probe the regime of parameter space where some inflationary

models [67–70] and most models of New Ekpyrosis [71–77] predict a signal.

24.1 Cosmic Microwave Background

The latest constraint on f local
NL and f equil

NL by Smith, Senatore, and Zaldarriaga [43, 97] are

−4 < f local
NL < +80 at 95% CL , (341)

−125 < f equil
NL < +435 at 95% CL . (342)

The Planck satellite and the proposed CMBPol mission are projected to give σ(f local
NL ) ∼ 5 and

σ(f local
NL ) ∼ 2, respectively. At the level of fNL ∼ O(1) we, in fact, expect to see a signal from sec-

ondary effects not associated with inflation. In order, not to confuse these effects with the primordial

signal, one needs to compute in detail how the non-linear evolution of fluctuations can induce its own

non-Gaussianity. To date, the effects haven’t been fully computed (but see, e.g. Refs.[98–100]). Of-

ten only their order of magnitude is estimated. A systematic characterization of all effects inducing

observable levels of non-Gaussianity is clearly timely.

24.2 Large-Scale Structure

Non-Gaussianity also leaves signatures in the large-scale structure in the universe. In general,

extracting primordial non-Gaussianity from large-scale structure observations is complicated by the

fact that non-linear fluctuations produce a non-Gaussianity that completely dominates over the signal

from primordial origin. However, recently, the concept of a scale-dependent bias has been introduced

as a promising probe of primordial non-Gaussianity [101, 102]. It has been shown [101, 102] that

for highly biased tracers of the underlying density field, the bias parameter depends on scale and on

fNL

Pδg(k) =
[
b+ ∆b(k, f local

NL )
]2
Pδ(k) . (343)

The details of the method are beyond the scope of this lecture but may be found e.g. in Ref. [102].

Application of the method to the luminous red galaxies (LRGs) sample of SDSS yields [102]

− 29 < f local
NL < +70 at 95% CL . (344)

Note that this limit is competitive with the constraints obtained from the CMB. Although more work

is needed to make this a truly robust test of primordial non-Gaussianity, the preliminary results by

Slosar et al. [102] provide an encouraging proof-of-principle demonstration of the method.
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25 Summary: Lecture 4

The study of non-Gaussian contributions to the correlations of cosmological fluctuations, is emerging

as an important probe of the early universe [86]. Being a direct measure of inflaton interactions non-

Gaussianity can potentially teach us a great deal about the inflationary dynamics.

The basic diagnostic for non-Gaussian fluctuations is the three-point function or bispectrum

〈Rk1Rk2Rk3〉 = (2π)3δ(k1 + k2 + k3)BR(k1, k2, k3) .

Physically motivated models for producing non-Gaussian perturbations often produce signals

that peak at special triangle configurations. Three special cases are:

i) squeezed triangle (k1 ≈ k2 � k3)

This is the dominant mode of models with multiple light fields during inflation [54–66], the

curvaton scenario [67, 68], inhomogeneous reheating [69, 70], and New Ekpyrotic models [71–

77].

ii) equilateral triangle (k1 = k2 = k3)

Signals that peak at equilateral triangles arise in models with higher-derivative interactions [93].

iii) folded triangle (k1 = 2k2 = 2k3)

Folded triangles arise in models with non-standard initial states [94].
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Figure 33: Shapes of Non-Gaussianity. The triangle shapes are parameterized by the rescaled

momenta, x2 = k2/k1, x3 = k3/k1.

The single-field consistency relation is

lim
k3→0
〈Rk1Rk2Rk3〉 = (2π)3δ(k1 + k2 + k3) (1− ns)PR(k1)PR(k3) .

This states that the squeezed limit of the bispectrum for single-field inflation is proportional to the

deviation from scale-invariance, 1− ns.
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26 Problem Set: Lecture 4

Problem 9 (Plots of Bispectra) Reproduce the plots of the bispectra for the local and equilat-

eral shapes (Figs. 31 and 32, respectively). Then plot the bispectra for slow-roll inflation, the DBI

model and for models with excited initial states, i.e. SSR(1, x2, x3) (Eqn. (324)), SDBI(1, x2, x3)

(Eqn. (339)) and S folded(1, x2, x3) (Eqn. (340)).
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Part VI

Lecture 5: Inflation in String Theory

Abstract

We end this lecture series with a discussion of a slightly more advanced topic: inflation in

string theory. We provide a pedagogical overview of the subject based on a recent review

article with Liam McAllister [16]. The central theme of the lecture is the sensitivity of

inflation to Planck-scale physics, which we argue provides both the primary motivation

and the central theoretical challenge for realizing inflation in string theory. We illustrate

these issues through two case studies of inflationary scenarios in string theory: warped

D-brane inflation and axion monodromy inflation. Finally, we indicate opportunities for

future progress both theoretically and observationally.

27 Why Combine Two Speculative Ideas?

In the previous lectures we have seen that inflation is remarkably successful as a phenomenological

model for the dynamics of the very early universe. However, a detailed understanding of the physical

origin of the inflationary expansion has remained elusive. Inflation and string theory are both

ambitious attempts to understand the physical universe at the highest energies. Both inflation and

string theory are speculative theories that still await experimental confirmation. One may therefore

wonder why it is timely to address the problem of inflation in string theory.

In this lecture we will highlight specific aspects of inflation that depend sensitively on the ultravi-

olet (UV) completion of quantum field theory and gravity, i.e. on the field content and interactions

at energies approaching the Planck scale. Such issues are most naturally addressed in a theory

of Planck-scale physics, for which string theory is arguably the best-developed candidate. This

motivates understanding the physics of inflation in string theory.

Readers less interested in the details of the string theory constructions in §29 might still find the

generic effective field theory arguments in §28 informative.

28 UV Sensitivity of Inflation

28.1 Effective Field Theory and Inflation

As a phenomenon in Quantum Field Theory coupled to General Relativity, inflation does not appear

to be natural. In particular, the set of Lagrangians suitable for inflation is a minute subset of the

set of all possible Lagrangians. Moreover, in wide classes of models, inflation emerges only for

rather special initial conditions, e.g. initial configurations with tiny kinetic energy, in the case of

small-field scenarios. Although one would hope to explore and quantify the naturalness both of

inflationary Lagrangians and of inflationary initial conditions, the question of initial conditions
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Figure 34: The Effective Field Theory (EFT) of Inflation. The cut-off Λ of the EFT is defined

by the mass of the lightest particle that is not included in the spectrum of the low-

energy theory. Particles with masses above the cut-off are integrated out, correcting

the Lagrangian for the light fields such as the inflaton.

appears inextricable from the active yet incomplete program of understanding measures in eternal

inflation (see §33 for a critical evaluation). In this lecture we will focus on the question of how

(un)natural it is to have a Lagrangian suitable for inflation.

For a single inflaton field with a canonical kinetic term, the necessary conditions for inflation

can be stated in terms of the inflaton potential (see Lecture 1). Inflation requires a potential that

is quite flat in Planck units

εv = M2
pl

(
V,φ
V

)2

� 1 , ηv =
M2

pl

2

V,φφ
V
� 1 . (345)

As we now argue, this condition is sensitive to Planck-scale physics.

Let us recall that the presence of some form of new physics at the Planck scale is required in

order to render graviton-graviton scattering sensible, just as unitarity of W -W scattering requires

new physics at the TeV scale. Although we know that new degrees of freedom must emerge, we

cannot say whether the physics of the Planck scale is a finite theory of quantum gravity, such as

string theory, or is instead simply an effective theory for some unimagined physics at yet higher

scales. However, the structure of the Planck-scale theory has meaningful – and, in very favorable

cases, testable – consequences for the form of the inflaton potential.

As usual, the effects of high-scale physics above some cutoff Λ are efficiently described by the

coefficients of operators in the low-energy effective theory (see Fig. 34). Integrating out particles of

mass M ≥ Λ gives rise to operators of the form

Oδ
M δ−4

, (346)
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where δ denotes the mass dimension of the operator.

Sensitivity to such operators is commonplace in particle physics: for example, bounds on flavor-

changing processes place limits on physics above the TeV scale, and lower bounds on the proton

lifetime even allow us to constrain GUT-scale operators that would mediate proton decay. However,

particle physics considerations alone do not often reach beyond operators of dimension δ = 6, nor

go beyond M ∼MGUT. (Scenarios of gravity-mediated supersymmetry breaking are one exception.)

Equivalently, Planck-scale processes, and operators of very high dimension, are irrelevant for most

of particle physics: they decouple from low-energy phenomena.

In inflation, however, the flatness of the potential in Planck units introduces sensitivity to δ ≤ 6

Planck-suppressed operators, such as
O6

M2
pl

. (347)

An understanding of such operators is required to address the smallness of the eta parameter, i.e. to

ensure that the theory supports at least 60 e-folds of inflationary expansion. This sensitivity to

dimension-six Planck-suppressed operators is therefore common to all models of inflation.

For large-field models of inflation the UV sensitivity of the inflaton action is dramatically en-

hanced. In this important class of inflationary models the potential becomes sensitive to an infinite

series of operators of arbitrary dimension (see §28.3).

28.2 The Eta Problem

In the absence of any specific symmetries protecting the inflaton potential, contributions to the

Lagrangian of the general form

O6

M2
pl

=
O4

M2
pl

φ2 (348)

are allowed. If the dimension-four operator O4 has a vacuum expectation value (vev) comparable

to the inflationary energy density, 〈O4〉 ∼ V , then this term corrects the inflaton mass by order

H, or equivalently corrects the eta parameter by order one, leading to an important problem for

inflationary model-building. Let us reiterate that contributions of this form may be thought of as

arising from integrating out Planck-scale degrees of freedom. In this section we discuss this so-called

eta problem first in effective field theory, §28.2.1, and then illustrate the problem in a supergravity

example, §28.2.2.

28.2.1 Radiative Instability of the Inflaton Mass

In a generic effective theory with cutoff Λ (see Fig. 34), the mass of a scalar field runs to the cutoff

scale unless it is protected by some symmetry. Since the cutoff for an effective theory of inflation is

at least the Hubble scale, Λ ≥ H, this implies that a small inflaton mass (mφ � H) is radiatively

unstable. Equivalently, the eta parameter receives radiative corrections,

∆ηv =
∆m2

φ

3H2
≥ 1 , (349)

preventing prolonged inflation.
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The difficulty here is analogous to the Higgs hierarchy problem, but supersymmetry does not

suffice to stabilize the inflaton mass: the inflationary energy necessarily breaks supersymmetry, and

the resulting splittings in supermultiplets are of order H, so that supersymmetry does not protect

a small inflaton mass mφ � H.

In §29.3 we discuss the natural proposal to protect the inflaton potential via a shift symmetry

φ → φ + const., which is equivalent to identifying the inflaton with a pseudo-Nambu-Goldstone-

boson. In the absence of such a symmetry the eta problem seems to imply the necessity of fine-tuning

the inflationary action in order to get inflation.

28.2.2 Supergravity Example

An important instance of the eta problem arises in locally-supersymmetric theories, i.e. in supergrav-

ity [103]. This case is relevant for many string theory models of inflation because four-dimensional

supergravity is the low-energy effective theory of supersymmetric string compactifications [104, 105].

In N = 1 supergravity, a key term in the scalar potential is the F-term potential,

VF = eK/M
2
pl

[
Kϕϕ̄DϕWDϕW −

3

M2
pl

|W |2
]
, (350)

where K(ϕ, ϕ̄) and W (ϕ) are the Kähler potential and the superpotential, respectively; ϕ is a com-

plex scalar field which is taken to be the inflaton; and we have defined DϕW ≡ ∂ϕW+M−2
pl (∂ϕK)W .

For simplicity of presentation, we have assumed that there are no other light degrees of freedom,

but generalizing our expressions to include other fields is straightforward.

The Kähler potential determines the inflaton kinetic term, −K,ϕϕ̄ ∂ϕ∂ϕ̄, while the superpotential

determines the interactions. To derive the inflaton mass, we expand K around some chosen origin,

which we denote by ϕ ≡ 0 without loss of generality, i.e. K(ϕ, ϕ̄) = K0 + K,ϕϕ̄|0 ϕϕ̄ + · · · . The

inflationary Lagrangian then becomes

L ≈ −K,ϕϕ̄ ∂ϕ∂ϕ̄− V0

(
1 + K,ϕϕ̄|0

ϕϕ̄

M2
pl

+ . . .
)

(351)

≡ −∂φ∂φ̄− V0

(
1 +

φφ̄

M2
pl

)
+ . . . , (352)

where we have defined the canonical inflaton field φφ̄ ≈ Kϕϕ̄|0 ϕϕ̄ and V0 ≡ VF |ϕ=0. We have

retained the leading correction to the potential originating in the expansion of eK/M
2
pl in Eqn. (350),

which could plausibly be called a universal correction in F-term scenarios. The omitted terms, some

of which can be of the same order as the terms we keep, arise from expanding[
Kϕϕ̄DϕWDϕW −

3

M2
pl

|W |2
]

(353)

in Eqn. (350) and clearly depend on the model-dependent structure of the Kähler potential and the

superpotential.

The result is of the form of Eqn. (347) with

O6 = V0 φφ̄ (354)
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and implies a large model-independent contribution to the eta parameter

∆ηv = 1 , (355)

as well as a model-dependent contribution which is typically of the same order. It is therefore clear

that in an inflationary scenario driven by an F-term potential, eta will generically be of order unity.

Under what circumstances can inflation still occur, in a model based on a supersymmetric La-

grangian? One obvious possibility is that the model-dependent contributions to eta (353) approxi-

mately cancel the model-independent contribution (352), so that the smallness of the inflaton mass

is a result of fine-tuning. In the case study of §29.2 we will provide a concrete example in which the

structure of all relevant contributions to eta can be computed, so that one can sensibly pursue such

a fine-tuning argument.

Clearly, it would be far more satisfying to exhibit a mechanism that removes the eta problem

by ensuring that all corrections are small, ∆ηv � 1. This requires either that the F-term potential

is negligible, or that the inflaton does not appear in the F-term potential. The first case does not

often arise, because F-term potentials play an important role in presently-understood models for

stabilization of the compact dimensions of string theory [106]. However, in §29.3 we will present a

scenario in which the inflaton is an axion and does not appear in the Kähler potential, or in the

F-term potential, to any order in perturbation theory. This evades the particular incarnation of the

eta problem that we have described above.

28.3 The Lyth Bound

In Lecture 2 we derived the Lyth bound [107]:

∆φ

Mpl
' O(1)

( r

0.01

)1/2
, (356)

where r is the value of the tensor-to-scalar ratio on CMB scales. In any model with r > 0.01 one

must therefore ensure that εv, |ηv| � 1 over a super-Planckian range ∆φ > Mpl. This result implies

two necessary conditions for large-field inflation:

i) an obvious requirement is that large field ranges are kinematically allowed, i.e. that the scalar

field space (in canonical units) has diameter > Mpl. This is nontrivial, as in typical string

compactifications many fields are not permitted such large excursions.

ii) the flatness of the inflaton potential needs to be controlled dynamically over a super-Planckian

field range. We discuss this challenge in effective field theory in §28.4 and in string theory in

§29.3.

28.4 Super-Planckian Fields and Flat Potentials

To begin, let us consider super-Planckian field excursions in the context of Wilsonian effective field

theory.
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28.4.1 No Shift Symmetry

In the absence of any special symmetries, the potential in large-field inflation becomes sensitive

to an infinite series of Planck-suppressed operators. The physical interpretation of these terms

is as follows: as the inflaton expectation value changes, any other fields χ to which the inflaton

couples experience changes in mass, self-coupling, etc. In particular, any field coupled with at least

gravitational strength to the inflaton experiences significant changes when the inflaton undergoes a

super-Planckian excursion. These variations of the χ masses and couplings in turn feed back into

changes of the inflaton potential and therefore threaten to spoil the delicate flatness required for

inflation. Note that this applies not just to the light degrees of freedom, but even to fields with

masses near the Planck scale: integrating out Planck-scale degrees of freedom generically (i.e., for

couplings of order unity) introduces Planck-suppressed operators in the effective action. For nearly

all questions in particle physics, such operators are negligible, but in inflation they play an important

role.

The particular operators which appear are determined, as always, by the symmetries of the low-

energy action. As an example, imposing only the symmetry φ → −φ on the inflaton leads to the

following effective action:

Leff(φ) = −1

2
(∂φ)2 − 1

2
m2φ2 − 1

4
λφ4 −

∞∑
p=1

[
λpφ

4 + νp(∂φ)2
]( φ

Mpl

)2p

+ · · · . (357)

Unless the UV theory enjoys further symmetries, one expects that the coefficients λp and νp are of

order unity. Thus, whenever φ traverses a distance of order Mpl in a direction that is not protected

by a suitably powerful symmetry, the effective Lagrangian receives substantial corrections from an

infinite series of higher-dimension operators. In order to have inflation, the potential should of

course be approximately flat over a super-Planckian range. If this is to arise by accident or by fine-

tuning, it requires a conspiracy among infinitely many coefficients, which has been termed ‘functional

fine-tuning’ (compare this to the eta problem which only requires tuning of one mass parameter).

28.4.2 Shift Symmetry

There is a sensible way to control this infinite series of corrections: one can invoke an approximate

symmetry that forbids the inflaton from coupling to other fields in any way that would spoil the

structure of the inflaton potential. Such a shift symmetry,

φ→ φ+ const. , (358)

protects the inflaton potential in a natural way.

In the case with a shift symmetry, the action of chaotic inflation [108]

Leff(φ) = −1

2
(∂φ)2 − λp φp , (359)

with small coefficient λp is ‘technically natural’. However, because we require that this symmetry

protects the inflaton even from couplings to Planck-scale degrees of freedom, it is essential that

the symmetry should be approximately respected by the Planck-scale theory – in other words, the
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proposed symmetry of the low-energy effective action should admit a UV-completion. Hence, large-

field inflation should be formulated in a theory that has access to information about approximate

symmetries at the Planck scale. Let us remark that in effective field theory in general, UV-completion

of an assumed low-energy symmetry is rarely an urgent question. The present situation is different

because we do not know whether all reasonable effective actions can in fact arise as low-energy

limits of string theory, and indeed it has been conjectured that many effective theories do not admit

UV-completion in string theory [109–111]. Therefore, it is important to verify that any proposed

symmetry of Planck-scale physics can be realized in string theory.

To construct an inflationary model with detectable gravitational waves, we are therefore inter-

ested in finding, in string theory, a configuration that has both a large kinematic range, and a

potential protected by a shift symmetry that is approximately preserved by the full string theory.

29 Inflation in String Theory

29.1 From String Compactifications to the Inflaton Action

String Compactification

Inflationary 
Lagrangians

4d Lagrangians

Observables

branes
fluxes

moduli

geometry of M6

potential V(φ)

Figure 35: From 10d Compactification Data to 4d Action.

29.1.1 Elements of String Compactifications

It is a famous fact that the quantum theory of strings is naturally defined in more than four spacetime

dimensions, with four-dimensional physics emerging upon compactification of the additional spatial

dimensions. For concreteness, we will focus on compactifications of the critical ten-dimensional type

IIB string theory on six-dimensional Calabi-Yau spaces.26

The vast number of distinct compactifications in this class are distinguished by their topology,

geometry, and discrete data such as quantized fluxes and wrapped D-branes. A central task in

string theory model-building is to understand in detail how the ten-dimensional sources determine

26Readers unfamiliar with this terminology may find a useful Stringlish-to-English dictionary in [112].
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the four-dimensional effective theory (see Fig. 35). If we denote the ten-dimensional compactification

data by C, the procedure in question may be written schematically as

S10[C] → S4 . (360)

Distinct compactification data C give rise to a multitude of four-dimensional effective theories S4 with

varied field content, kinetic terms, scalar potentials, and symmetry properties (this is the landscape

of solutions to string theory). By understanding the space of possible data C and the nature of the

map in Eqn. (360), we can hope to identify, and perhaps even classify, compactifications that give

rise to interesting four-dimensional physics.

FLUX

BRANES

Figure 36: Elements of Flux Compactifications: Fluxes and Wrapped Branes.

29.1.2 The Effective Inflaton Action

For our purposes, the most important degrees of freedom of the effective theory are four-dimensional

scalar fields. Scalar fields known as moduli arise from deformations of the compactification manifold,

typically numbering in the hundreds for the Calabi-Yau spaces under consideration, and from the

positions, orientations, and gauge field configurations of any D-branes. From given compactification

data one can compute the kinetic terms and scalar potentials of the moduli; in turn, the expectation

values of the moduli determine the parameters of the four-dimensional effective theory. In the

presence of generic ten-dimensional sources of stress-energy, such as D-branes and quantized fluxes,

there is an energy cost for deforming the compactification, and many (though not always all) of the

moduli fields become massive [113].

It is useful to divide the scalar fields arising in S4 into a set of light fields φ, ψ with masses below

the Hubble scale (mφ,mψ � H) and a set of heavy fields χ with masses much greater than the

Hubble scale (mχ � H). Here one of the light fields, denoted φ, has been identified as the inflaton

candidate.

To understand whether successful inflation can occur, one must understand all the scalar fields,

both heavy and light. First, sufficiently massive moduli fields are effectively frozen during inflation,
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and one should integrate them out to obtain an effective action for the light fields only,

S4(φ, ψ, χ) → S4,eff(φ, ψ) . (361)

Integrating out these heavy modes generically induces contributions to the potential of the putative

inflaton: that is, moduli stabilization contributes to the eta problem. This is completely analogous

to the appearance of corrections from higher-dimension operators in our discussion of effective field

theory in §28.1.

Next, if scalar fields in addition to the inflaton are light during inflation, they typically have

important effects on the dynamics, and one should study the evolution of all fields ψ with masses

mψ � H. Moreover, even if the resulting multi-field inflationary dynamics is suitable, light de-

grees of freedom can create problems for late-time cosmology. Light scalars absorb energy during

inflation and, if they persist after inflation, they can release this energy during or after Big Bang

nucleosynthesis, spoiling the successful predictions of the light element abundances. Moreover, light

moduli would be problematic in the present universe, as they mediate fifth forces of gravitational

strength. To avoid these late-time problems, it suffices to ensure that mψ � 30 TeV, as in this case

the moduli decay before Big Bang nucleosynthesis. A simplifying assumption that is occasionally

invoked is that all fields aside from the inflaton should have m � H, but this is not required on

physical grounds: it serves only to arrange that the effective theory during inflation has only a single

degree of freedom.

29.2 Case Study: Warped D-brane Inflation

In string theory models of inflation the operators contributing to the inflaton potential can be enu-

merated, and in principle even their coefficients can be computed in terms of given compactification

data. To illustrate these issues, it is useful to examine a concrete model in detail. In the following

we therefore present a case study of a comparatively well-understood model of small-field inflation,

warped D-brane inflation.

29.2.1 D3-branes in Warped Throat Geometries

In this scenario inflation is driven by the motion of a D3-brane in a warped throat region of a

stabilized compact space [47]. To preserve four-dimensional Lorentz (or de Sitter) invariance, the

D3-brane fills our four-dimensional spacetime and is pointlike in the extra dimensions (see Figure

37). The global compactification is assumed to be a warped product of four-dimensional spacetime

(with metric gµν) and a conformally-Calabi-Yau space,

ds2 = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn , (362)

with gmn a Calabi-Yau metric that can be approximated in some region by a cone over a five-

dimensional Einstein manifold X5,

gmndymdyn = dr2 + r2ds2
X5
. (363)

A canonical example of such a throat region is the Klebanov-Strassler (KS) geometry [114], for

which X5 is the
(
SU(2) × SU(2)

)
/U(1) coset space T 1,1, and the would-be conical singularity at
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warped throat

rD3
D3

Ψ

bulk

Figure 37: D3-brane inflation in a warped throat geometry. The D3-branes are spacetime-filling

in four dimensions and therefore pointlike in the extra dimensions. The circle stands

for the base manifold X5 with angular coordinates Ψ. The brane moves in the radial

direction r. At rUV the throat attaches to a compact Calabi-Yau space. Anti-D3-branes

minimize their energy at the tip of the throat, rIR.

the tip of the throat, r = 0, is smoothed by the presence of appropriate fluxes. The tip of the throat

is therefore located at a finite radial coordinate rIR, while at r = rUV the throat is glued into an

unwarped bulk geometry. In the relevant regime rIR � r < rUV the warp factor may be written as

[115]

e−4A(r) =
R4

r4
ln

r

rIR
, R4 ≡ 81

8
(gsMα′)2 , (364)

where

ln
rUV

rIR
≈ 2πK

3gsM
. (365)

Here, M and K are integers specifying the flux background [114, 116].

Warping sourced by fluxes is commonplace in modern compactifications, and there has been much

progress in understanding the stabilization of the moduli of such a compactification [113]. Posit-

ing a stabilized compactification containing a KS throat therefore seems reasonable given present

knowledge.

29.2.2 The Field Range Bound

Before addressing the complicated problem of the shape of the inflationary potential let us ask if

these models can ever source a large gravitational wave amplitude. It turns out that this question

can be phrased in purely geometrical terms and does not depend on the details of inflationary

dynamics [117]. By the Lyth bound we know that a large gravitational wave signal requires super-

Planckian field variation. As a minimal requirement we therefore ask if super-Planckian field values

are accessible in warped D-brane inflation.

The inflaton kinetic term is determined by the Dirac-Born-Infeld (DBI) action for a probe D3-

brane, and leads to an identification of the canonical inflaton field with a multiple of the radial

coordinate, φ2 ≡ T3r
2. Here, T3 ≡

[
(2π)3gsα

′2]−1
is the D3-brane tension, with gs the string
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coupling and 2πα′ the inverse string tension. The length of the throat, ∆r = rUV − rIR ≈ rUV

provides an upper limit on the inflaton field variation

∆φ2 < T3 r
2
UV . (366)

Naively, it seems that this could be made arbitrarily large by simply increasing the length of the

throat. However, this changes the volume of the compact space which affects the four-dimensional

Planck mass, the unit in which we should measure the inflaton variation. To take this effect into

account, we notice that dimensional reduction relates the four-dimensional Planck mass, Mpl, to the

ten-dimensional gravitational coupling, κ2
10 = 1

2(2π)7g2
s(α
′)4,

M2
pl =

V6

κ2
10

, (367)

where V6 ≡
∫

d6y
√
ge2A(y) is the (warped) volume of the internal space. Since we are interested in

an upper limit on ∆φ/Mpl we bound V6 from below by the volume of the throat region (including

an estimate of the bulk volume would only strengthen our conclusions)

V6 > (V6)throat = Vol(X5)

∫ rUV

0
dr r5e2A(r) = 2π4gsN(α′)2r2

UV , (368)

where N ≡MK measures the background flux. For control of the supergravity approximation (and

to achieve sufficient warping of the background) we require N � 1. Combining the above results we

find [117]

∆φ

Mpl
<

2√
N

. (369)

Since N � 1, this implies that the inflaton variation will always be sub-Planckian, ∆φ�Mpl, and

the gravitational wave amplitude is necessarily small. We emphasize again that this argument was

purely geometrical and didn’t depend on the complicated details of the inflationary potential which

we discuss next.

29.2.3 The D3-brane Potential

Inflation proceeds as a D3-brane moves radially inward in the throat region, towards an anti-D3-

brane that is naturally situated at the tip of the throat. The exit from inflation occurs when open

strings stretched between the approaching pair become tachyonic and condense, annihilating the

branes.

In this simplified picture, inflation is driven by the extremely weak (warping-suppressed) Coulomb

interaction of the brane-antibrane pair [47]. The true story, however, is more complex, as moduli

stabilization introduces new terms in the inflaton potential which typically overwhelm the Coulomb

term and drive more complicated dynamics [47–49, 118–120]. This pattern is precisely what we

anticipated in our effective field theory discussion: integrating out moduli fields can be expected to

induce important corrections to the potential.

An important correction induced by moduli stabilization is the inflaton mass term arising from

the supergravity F-term potential, §28.2.2. In a vacuum stabilized by an F-term potential, i.e. by

superpotential terms involving the moduli, one finds the mass term H2
0φ

2 = 1
3V0(φ?)

φ2

M2
pl

[47], where
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φ? is an arbitrary reference value for the inflaton field and the parameter H0 should not be confused

with the present-day Hubble constant.

However, one expects additional contributions to the potential from a variety of other sources,

such as additional effects in the compactification that break supersymmetry [49]. Let us define ∆V (φ)

to encapsulate all contributions to the potential aside from the Coulomb interaction V0(φ) and the

mass term H2
0φ

2; then the total potential and the associated contributions to the eta parameter may

be written as

V (φ) = V0(φ) + H2
0φ

2 + ∆V (φ) (370)

ηv(φ) = η0 +
2

3
+ ∆ηv(φ) = ? (371)

where η0 � 1 because the Coulomb interaction is very weak. (More generally, V0(φ) can be defined

to be all terms in V (φ) with negligible contributions to η. Besides the brane-antibrane Coulomb

interaction, this can include any other sources of nearly-constant energy, e.g. bulk contributions to

the cosmological constant.)

Clearly, ηv can only be small if ∆V can cancel the mass term in Eqn. (370). We must therefore

enumerate all relevant contributions to ∆V , and attempt to understand the circumstances under

which an approximate cancellation can occur. Note that identifying a subset of contributions to ∆V

while remaining ignorant of others is insufficient.

Warped D-brane inflation has received a significant amount of theoretical attention in part

because of its high degree of computability. Quite generally, if we had access to the full data of

an explicit, stabilized compactification with small curvatures and weak string coupling, we would

in principle be able to compute the potential of a D-brane inflaton to any desired accuracy, by

performing a careful dimensional reduction. This is not possible at present for a generic compact

Calabi-Yau, for two reasons: for general Calabi-Yau spaces hardly any metric data is available, and

examples with entirely explicit moduli stabilization are rare.

However, a sufficiently long throat is well-approximated by a noncompact throat geometry (i.e.,

a throat of infinite length), for which the Calabi-Yau metric can often be found, as in the important

example of the Klebanov-Strassler solution [114], which is entirely explicit and everywhere smooth.

Having complete metric data greatly facilitates the study of probe D-brane dynamics, at least at the

level of an unstabilized compactification. Furthermore, we will now explain how the effects of moduli

stabilization and of the finite length of the throat can be incorporated systematically. The method

involves examining perturbations to the supergravity solution that describes the throat in which the

D3-brane moves. For concreteness we will work with the example of a KS throat, but the method

is far more general. Our treatment will allow us to give explicit expressions for the correction terms

∆V in Eqn. (370), and hence to extract the characteristics of inflation in the presence of moduli

stabilization.

29.2.4 Sketch of the Supergravity Analysis

In the following we describe the computation of the inflaton potential for warped D3-brane inflation.

This is only meant to give a flavor of the challenges involved in understanding the full potential. For

more details we refer the reader to [47–49, 118, 119].

Type IIB string theory contains a good dozen of fields (going by names such as dilaton, p-form

fluxes, warp factors, metric perturbations, etc.). In principle, we would have to worry that all
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those fields could couple to the inflaton degree of freedom and hence have to be considered when

computing the inflaton potential to the desired accuracy. However, D3-branes are special in that

they only couple to a specific combination of the warp factor and the five-form flux and are blind to

perturbations in all other fields

VD3(φ) = T3(e4A − α) ≡ T3Φ− , (372)

where the scalar function α(φ) is related to the five-form flux F5. We are therefore interested in

perturbations of the object Φ− = e4A − α. In the KS background Φ− vanishes, but coupling of the

throat to the bulk geometry and interaction with moduli-stabilizing degrees of freedom like wrapped

D7-branes, induces a non-zero Φ−. To study the induced Φ− perturbations, we investigate the

supergravity equation of motion

∇2Φ− =
1

24
|G−|2 +R , (373)

where G− is a special (imaginary anti-self-dual) combination of 3-form fluxes and R is the 4-

dimensional Ricci scalar. During inflation R is given by the square of the Hubble parameter H.

All fields are expressed as harmonic expansions on the five-dimensional base manifold X5 = T1,1,

e.g.

Φ−(φ,Ψ) =
∑
LM

ΦLM

(
φ

φUV

)∆(L)

YLM (Ψ) + c.c. , (374)

where Ψ parameterizes five angles on T1,1 and the scaling dimension ∆ is determined by the eigen-

values of the angular Laplacian. The spectrum of eigenvalues hence determines the radial scaling of

correction terms.

1. Homogeneous solution

The solution to the homogeneous equation

∇2Φ− = 0 , (375)

was found in Ref. [49]. The leading corrections have the following radial scalings

∆ =
3

2
, 2 , · · · . (376)

2. Inhomogeneous solution

(a) Curvature-induced correction

The Ricci scalar of the four-dimensional de Sitter spacetime couples to the inflaton. This

is reflected by a source term in Φ− equation of motion

∇2Φ− = R . (377)

For constant R = 12H2 this induces a correction to the inflaton mass. This is precisely

the Hubble scale inflaton mass term found by KKLMMT [47].
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(b) Flux-induced corrections

Imaginary anti-self dual 3-form fluxes27, ?6G− = −iG−, also source corrections of the

D3-brane potential [122]

∇2Φ− =
1

24
|G−|2 . (378)

Consistently also solving the G− equation of motion, dG− = 0, we find the following

leading corrections

∆ = 1 ,
5

2
, · · · . (379)

In summary, solving Eqn. (373) we found [49]

VD3 = T3Φ− =
∑
∆

φ∆f∆(Ψ) , (380)

where

∆ = 1 ,
3

2
, 2 , · · · . (381)

The discrete spectrum (381) of corrections to the inflaton potential determines the phenomenology

of the model.

29.2.5 Phenomenological Implications

Two different scenarios arise depending on whether the ∆ = 3
2 or the ∆ = 2 correction is the

dominant contribution to ∆ηv at small φ (note that ∆ = 1 doesn’t contribute to ηv):

1. Quadratic case

If the ∆ = 3
2 mode is projected out of the spectrum (this can be achieved by imposing discrete

symmetries on the UV boundary conditions, see Ref. [49]), the effective radial potential is

V (φ) = V0(φ) + βH2φ2 . (382)

The phenomenology of these types of potentials was first studied analytically by [47] and [123],

and numerically by [124].

2. Fractional case

If the fractional mode ∆ = 3
2 is present, it leads to inflection point models [48, 49, 119, 120]

(see Fig. 38).

29.2.6 Summary and Perspective

In §28.1 we explained how the eta problem is sensitive to dimension-six Planck suppressed operators.

In effective field theory models of inflation one can of course always assume a solution to the eta

problem by a cancellation of the contributing correction terms; in other words, one can postulate

that a flat potential V (φ) arises after an approximate cancellation among dimension-six Planck-

suppressed corrections. In string theory models of inflation, to follow this path would be to abdicate

27Here, ?6 is the six-dimensional Hodge star operator, see e.g. [121].
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Figure 38: Inflection Point Inflation.

the opportunity to use Planck-suppressed contributions as a (limited) window onto string theory.

Moreover, once φ is identified with a physical degree of freedom of a string compactification, the

precise form of the potential is in principle fully specified by the remaining data of the compactifica-

tion. (Mixing conjecture into the analysis at this stage would effectively transform a ‘string-derived’

scenario into a ‘string-inspired’ scenario; the latter may be interesting as a cosmological model, but

will not contribute to our understanding of string theory.) Thus, overcoming the eta problem be-

comes a detailed computational question. One can in principle compute the full potential from first

principles, and in practice one can often classify corrections to the leading-order potential.

In this section, we have enumerated the leading corrections for warped D-brane inflation and

showed that an accidental cancellation (or fine-tuning) allows small eta over a limited range of

inflaton values. This gives a non-trivial existence proof for inflationary solutions in warped throat

models with D3-branes.

29.3 Case Study: Axion Monodromy Inflation

We now turn to our second case study, an example of large-field inflation in string theory. As we

have discussed in §28.4, the particular challenge in these models is the need to control an infinite

series of contributions to the inflaton potential, arising from couplings of the inflaton to degrees of

freedom with masses near the Planck scale. Direct enumeration and fine-tuning of such terms (as

in the small-field example in §29.2) is manifestly impractical, and it appears essential to develop a

symmetry argument controlling or forbidding these terms.

An influential proposal in this direction is Natural Inflation [125] (see Lecture 1), in which a

pseudo-Nambu-Goldstone boson (i.e., an axion) is the inflaton. At the perturbative level, the axion

field a enjoys a continuous shift symmetry a→ a+ const which is broken by nonperturbative effects

to a discrete symmetry a→ a+ 2π. The nonperturbative effects generate a periodic potential

V (φ) =
Λ4

2

[
1− cos

(
φ

f

)]
+ . . . , (383)
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where Λ is a dynamically-generated scale, f is known as the axion decay constant, φ ≡ af , and the

omitted terms are higher harmonics.

As explained above, an important question, in any proposed effective theory in which a super-

Planckian field range is protected by a shift symmetry, is whether this structure can be UV-

completed. We should therefore search in string theory for an axion with decay constant f > Mpl.

29.3.1 Axions in String Theory

Axions from p-Forms

Axions are plentiful in string compactifications, arising from p-form gauge potentials integrated

on p-cycles of the compact space. For example, in type IIB string theory, there are axions bi =

2π
∫

Σi
B arising from integrating the Neveu-Schwarz (NS) two-form B over two-cycles Σi, as well

as axions ci = 2π
∫

Σi
C arising from the Ramond-Ramond (RR) two-form C. In the absence of

additional ingredients such as fluxes and space-filling wrapped branes, the potential for these axions

is classically flat and has a continuous shift symmetry which originates in the gauge invariance of the

ten-dimensional action. Instanton effects break this symmetry to a discrete subgroup, bi → bi + 2π

(ci → ci + 2π). This leads to a periodic contribution to the axion potential whose periodicity we

will now estimate. We will find that the axion decay constants are smaller than Mpl in known,

computable limits of string theory [126, 127]. Readers less familiar with string compactifications can

accept this assertion and skip to §29.3.2 without loss of continuity.

D5-braneD5-brane

B-fluxB-flux

Figure 39: Axion Monodromy

Axion Decay Constants in String Theory

Let ωi be a basis for H2(X,Z), the space of two-forms on the compact space X, with
∫

Σi
ωj = α′δ j

i .

The NS two-form potential B may be expanded as

B =
1

2π

∑
i

bi(x)ωi , (384)

with x the four-dimensional spacetime coordinate. The axion decay constant can be inferred from

the normalization of the axion kinetic term, which in this case descends from the ten-dimensional
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term
1

(2π)7g2
sα
′4

∫
d10x

1

2
|dB|2 ⊃ 1

2

∫
d4x
√−g γij(∂µbi∂µbj) , (385)

where

γij ≡ 1

6(2π)9g2
sα
′4

∫
X
ωi ∧ ?6 ω

j (386)

and ?6 is the six-dimensional Hodge star operator. By performing the integral over the internal

space X and diagonalizing the field space metric as γij → f2
i δij , one can extract the axion decay

constant fi.

It is too early to draw universal conclusions, but a body of evidence suggests that the resulting

axion periodicities are always smaller than Mpl in computable limits of string theory [126, 127]. As

this will be essential for our arguments, we will illustrate this result in a simple example. Suppose

that the compactification is isotropic, with typical length-scale L and volume L6. Then using

α′M2
pl =

2

(2π)7

L6

g2
sα
′3 (387)

we find from Eqn. (386) that

f2 ≈M2
pl

α′2

6(2π)2L4
. (388)

In controlled compactifications we require L�
√
α′, so that f �Mpl. Qualitatively similar conclu-

sions apply in much more general configurations [126, 127].

29.3.2 Axion Inflation in String Theory

The above result would seem to imply that Natural Inflation from a single axion field cannot be

realized in known string compactifications: string theory provides many axions, but none of these has

a sufficiently large field range. However, there are at least two reasonable proposals to circumvent

this obstacle.

N-flation

The first suggestion was that a collective excitation of many hundreds of axions could have an

effective field range large enough for inflation [44, 128]. The role of the inflaton is played by the

collective field

φ2 =

N∑
i=1

φ2
i . (389)

Even if each individual field has a sub-Planckian field range, φi < Mpl, for sufficiently large number

of fields N , the effective field φ can have a super-Planck excursion. This ‘N-flation’ proposal is a

specific example of assisted inflation [129], but, importantly, one in which symmetry helps to protect

the axion potential from corrections that would impede inflation. Although promising, this scenario

still awaits a proof of principle demonstration, as the presence of a large number of light fields leads

to a problematic renormalization of the Newton constant, and hence to an effectively reduced field

range. For recent studies of N-flation see [130, 131].
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Axion Monodromy

We will instead describe an elementary mechanism, monodromy, which allows inflation to persist

through multiple circuits of a single periodic axion field. A system is said to undergo monodromy

if, upon transport around a closed loop in the (naive) configuration space, the system reaches a new

configuration. A spiral staircase is a canonical example: the naive configuration space is described

by the angular coordinate, but the system changes upon transport by 2π. (In fact, we will find

that this simple model gives an excellent description of the potential in axion monodromy inflation.)

The idea of using monodromy to achieve controlled large-field inflation in string theory was first

proposed by Silverstein and Westphal [46], who discussed a model involving a D4-brane wound

inside a nilmanifold. In this section we will focus instead on the subsequent axion monodromy

proposal of Ref. [45], where a monodromy arises in the four-dimensional potential energy upon

transport around a circle in the field space parameterized by an axion.

Monodromies of this sort are possible in a variety of compactifications, but we will focus on a

single concrete example. Consider type IIB string theory on a Calabi-Yau orientifold, i.e. a quotient

of a Calabi-Yau manifold by a discrete symmetry that includes worldsheet orientation reversal and a

geometric involution. Specifically, we will suppose that the involution has fixed points and fixed four-

cycles, known as O3-planes and O7-planes, respectively. If in addition the compactification includes

a D5-brane that wraps a suitable two-cycle Σ and fills spacetime, then the axion b = 2π
∫

ΣB can

exhibit monodromy in the potential energy. (Similarly, a wrapped NS5-brane produces monodromy

for the axion c = 2π
∫

ΣC.) In other words, a D5-brane wrapping Σ carries a potential energy that

is not a periodic function of the axion, as the shift symmetry of the axion action is broken by the

presence of the wrapped brane; in fact, the potential energy increases without bound as b increases.

In the D5-brane case, the relevant potential comes from the Dirac-Born-Infeld action for the

wrapped D-brane,

SDBI =
1

(2π)5gsα′3

∫
M4×Σ

d6ξ
√

det(G+B) (390)

=
1

(2π)6gsα′2

∫
M4

d4x
√−g

√
(2π)2`4Σ + b2 , (391)

where `Σ is the size of the two-cycle Σ in string units. The brane energy, Eqn. (391), is clearly not

invariant under the shift symmetry b → b + 2π, although this is a symmetry of the corresponding

compactification without the wrapped D5-brane. Thus, the DBI action leads directly to monodromy

for b. Moreover, when b � `2Σ, the potential is asymptotically linear in the canonically-normalized

field ϕb ∝ b.
The qualitative inflationary dynamics in this model is as follows: One begins with a D5-brane

wrapping a curve Σ, upon which
∫

ΣB is taken to be large. In other words, the axion b has a large

initial vev. Inflation proceeds by the reduction of this vev, until finally
∫

ΣB = 0 and the D5-brane is

nearly ‘empty’, i.e. has little worldvolume flux. During this process the D5-brane does not move, nor

do any of the closed-string moduli shift appreciably. For small axion vevs, the asymptotically linear

potential we have described is inaccurate, and the curvature of the potential becomes non-negligible;

see Eqn. (391). At this stage, the axion begins to oscillate around its origin. Couplings between the

axion and other degrees of freedom, either closed string modes or open string modes, drain energy

from the inflaton oscillations. If a sufficient fraction of this energy is eventually transmitted to
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visible-sector degrees of freedom – which may reside, for example, on a stack of D-branes elsewhere

in the compactification – then the hot Big Bang begins. The details of reheating depend strongly

on the form of the couplings between the Standard Model degrees of freedom and the inflaton, and

this is an important open question, both in this model and in string inflation more generally.

29.3.3 Compactification Considerations

Having explained the essential idea of axion monodromy inflation, we must still ensure that the

proposed inflationary mechanism is compatible with moduli stabilization and can be realized in a

consistent compactification. An immediate concern is whether there are additional contributions

to the potential, beyond the linear term identified above, that could have important effects dur-

ing inflation. As we have emphasized throughout this review, one expects that in the absence of

a symmetry protecting the inflaton potential, generic corrections due to moduli stabilization will

contribute ∆η ∼ O(1). It is therefore essential to verify that the continuous shift symmetry which

protects the inflaton potential is preserved to an appropriate degree by the stabilized compactifi-

cation. For the special case of moduli stabilization in which nonperturbative effects play a role,

ensuring that the shift symmetry is not spoiled can be quite subtle. This is described in detail in

Ref. [45].

29.3.4 Summary and Perspective

The Lyth bound shows that an observable gravitational wave signal correlates with the inflaton field

moving over a super-Planckian distance during inflation. Effective field theory models of large-field

inflation then require a shift symmetry to protect the flatness of the potential over a super-Planckian

range. It has therefore become an important question whether such shift symmetries arise in string

theory and can be used to realize large-field inflation.

In this section, we argued that the first examples of shift symmetries in string theory that

protect the potential over a super-Planckian range are becoming available. We explained the dual

role of the monodromy: i) it results in a large kinematic field range ∆φ > Mpl by allowing a small

fundamental domain to be traversed repeatedly, and ii) in combination with the shift symmetry

it controls corrections to the potential over a super-Planckian range. The shift symmetry, only

weakly broken by V , controls corrections ∆V within a fundamental domain, and furthermore relates

corrections in one fundamental domain to those in any other. Monodromy therefore effectively

reduces a large-field problem to a small-field problem [46].

Although more work is required to understand these models and the compactifications in which

they arise, monodromy appears to be a robust and rather promising mechanism for realizing large-

field inflation, and hence an observable gravitational wave signal, in string theory.

30 Outlook

30.1 Theoretical Prospects

As we hope this lecture has illustrated, theoretical progress in recent years has been dramatic. A

decade ago, only a few proposals for connecting string theory to cosmology were available, and the
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problem of stabilizing the moduli had not been addressed. We now have a wide array of inflationary

models motivated by string theory, and the best-studied examples among these incorporate some

information about moduli stabilization. Moreover, a few mechanisms for inflation in string theory

have been shown to be robust, persisting after full moduli stabilization with all relevant corrections

included.

Aside from demonstrating that inflation is possible in string theory, what has been accomplished?

In our view the primary use of explicit models of inflation in string theory is as test cases, or toy

models, for the sensitivity of inflation to quantum gravity. On the theoretical front, these models have

underlined the importance of the eta problem in general field theory realizations of inflation; they

have led to mechanisms for inflation that might seem unnatural in field theory, but are apparently

natural in string theory; and they have sharpened our understanding of the implications of a detection

of primordial tensor modes.

It is of course difficult to predict the direction of future theoretical progress, not least because

unforeseen fundamental advances in string theory can be expected to enlarge the toolkit of inflation-

ary model-builders. However, it is safe to anticipate further gradual progress in moduli stabilization,

including the appearance of additional explicit examples with all moduli stabilized; entirely explicit

models of inflation in such compactifications will undoubtedly follow. At present, few successful

models exist in M-theory or in heterotic string theory, and under mild assumptions, inflation can

be shown to be impossible in certain classes of type IIA compactifications [132–134]. It would be

surprising if it turned out that inflation is much more natural in one weakly-coupled limit of string

theory than in the rest, and the present disparity can be attributed in part to the differences among

the moduli-stabilizing tools presently available in the various limits. Clearly, it would be useful to

understand how inflation can arise in more diverse string vacua.

The inflationary models now available in string theory are subject to stringent theoretical con-

straints arising from consistency requirements (e.g., tadpole cancellation) and from the need for

some degree of computability. In turn, these limitations lead to correlations among the cosmological

observables, i.e. to predictions. Some of these constraints will undoubtedly disappear as we learn

to explore more general string compactifications. However, one can hope that some constraints may

remain, so that the set of inflationary effective actions derived from string theory would be a proper

subset of the set of inflationary effective actions in a general quantum field theory. Establishing such

a proposition would require a far more comprehensive understanding of string compactifications than

is available at present.

30.2 Observational Signatures?

The theoretical aspects of inflation described in this lecture are interesting largely because they can

be tested experimentally using present and future cosmological data (see Lecture 3).

As we have repeatedly emphasized throughout these lectures, the most dramatic confirmation

of inflation would come from a detection of B-mode polarization, which would establish the energy

scale of inflation and would indicate that the inflaton traversed a super-Planckian distance. As we

have argued in this lecture, super-Planckian displacements are a key instance in which the inflaton

effective action is particularly sensitive to the physics of the Planck scale. As a concrete example

of the discriminatory power of tensor perturbations, any detection of primordial gravitational waves

would exclude the warped D3-brane inflation scenario of §29.2 [117], while an upper bound r < 0.07
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(or a detection with r � 0.07) would exclude the axion monodromy scenario of §29.3 [45].

A further opportunity arises because single-field slow-roll inflation predicts null results for many

cosmological observables, as the primordial scalar fluctuations are predicted to be scale-invariant,

Gaussian and adiabatic to a high degree. A detection of non-Gaussianity, isocurvature fluctua-

tions or a large scale-dependence (running) would therefore rule out single-field slow-roll inflation.

Inflationary effective actions that do allow for a significant non-Gaussianity, non-adiabaticity or

scale-dependence often require higher-derivative interactions and/or more than one light field, and

such actions arise rather naturally in string theory. Although we have focused in this lecture on the

sensitivity of the inflaton potential to Planck-scale physics, the inflaton kinetic term is equally UV-

sensitive, and string theory provides a promising framework for understanding the higher-derivative

interactions that can produce significant non-Gaussianity [78, 93].

Finally, CMB temperature and polarization anisotropies induced by relic cosmic strings or other

topological defects provide probes of the physics of the end of inflation or of the post-inflationary era.

Cosmic strings are automatically produced at the end of brane-antibrane inflation [135, 136], and

the stability and phenomenological properties of the resulting cosmic string network are determined

by the properties of the warped geometry. Detecting cosmic superstrings via lensing or through their

characteristic bursts of gravitational waves is an exciting prospect.
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31 Summary: Lecture 5

Recent work by many authors has led to the emergence of robust mechanisms for inflation in string

theory (see Refs. [16, 137–141] for recent reviews). The primary motivations for these works are the

sensitivity of inflationary effective actions to the ultraviolet completion of gravity, and the prospect

of empirical tests using precision cosmological data.

In this lecture we illustrated the UV sensitivity of inflation with two examples:

• The eta problem

The smallness of the eta parameter (or the inflaton mass) is sensitive to dimension-six Planck-

suppressed corrections,

∆V ∼ V φ2

M2
pl

⇒ ∆ηv ∼ 1 .

Such terms arise when integrating out heavy degrees of freedom (above the cutoff) to arrive

at the low energy effective theory. For the example of warp brane inflation we showed how

this problem is made explicit in string theory calculations [48, 49, 118, 122].

• Tensor modes in large-field models

The inflaton field is required to move over a super-Planckian distance for inflation to gener-

ate an observable gravitational wave amplitude. Protecting the flatness of the inflationary

potential over a super-Planckian range is challenging:

– No shift symmetry

In the absence of any special symmetries, the potential in large-field inflation becomes

sensitive to an infinite series of Planck-suppressed operators

Leff(φ) = −1

2
(∂φ)2 − 1

2
m2φ2 − 1

4
λφ4 −

∞∑
p=1

[
λpφ

4 + νp(∂φ)2
]( φ

Mpl

)2p

+ · · · .

In this case, the flatness of the potential over a super-Planckian range requires a fine-

tuning of a large number of expansion parameters λp (compared to the eta problem which

only requires tuning of one mass parameter).

– Shift symmetry

If the inflaton field respects a shift symmetry, φ→ φ+ const., then the action of chaotic

inflation

Leff(φ) = −1

2
(∂φ)2 − λp φp ,

with small coefficient λp is ‘technically natural’.

To construct an inflationary model with detectable gravitational waves, we are therefore in-

terested in finding, in string theory, a configuration that has both a large kinematic range,

∆φ > Mpl, and a potential protected by a shift symmetry that is approximately preserved by

the full string theory. Such models have recently been constructed in Refs. [45, 46, 142].
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Part VII

Conclusions

32 Recap: TASI Lectures on Inflation

Fig. 40 summarizes many of the key concepts described in these lectures.

(aH)−1

〈RkRk′〉 super-horzionsub-horizon

Ṙ ≈ 0

transfer
  function

CMB
recombination today

projection∆T C!

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Figure 40: Evolution of the horizon and generation of perturbations in the inflationary universe.

• Lecture 1: We defined inflation as a phase in the very early universe when the comoving

Hubble radius, (aH)−1, was decreasing. We explained that this key characteristic of inflation

was at the heart of the solution to the horizon and flatness problems. The apparent acausal

correlations of CMB fluctuations on super-horizon scales at recombination are explained by

those scales being inside the horizon during inflation (and hence causally-connected).

• Lecture 2: Modes exit the horizon during inflation and re-enter at later times during the

conventional FRW expansion. We described scalar fluctuations during inflation in terms of the

comoving curvature perturbation R. A crucial feature of R is that it freezes on super-horizon

scales, Ṙ ≈ 0. The initial conditions for R can therefore be computed at horizon exit during

inflation and translated without change to horizon re-entry (under fairly weak assumptions

this is independent of the unknown physics of reheating). In Lecture 2 we computed the power

spectrum of curvature perturbations, 〈RkRk′〉 = (2π)3δ(k + k′)PR(k), at horizon exit.

• Lecture 3: After horizon re-entry, the curvature perturbation R evolves into fluctuations

of the CMB temperature ∆T at recombination. This sub-horizon evolution is captured by

the transfer functions discussed in Lecture 3. Finally, today we see a projection of the CMB

fluctuations from the last-scattering-surface to us. Experiments measure the angular power

spectrum of CMB temperature fluctuations, C`. In Lecture 3 we explained how to relate the
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observed angular power spectrum of CMB anisotropies to the power spectrum of primordial

curvature fluctuations, PR(k), generated during inflation. Inverting the sub-horizon evolution

and removing projection effects, CMB observations therefore provide a powerful probe of the

inflationary perturbations.

• Lecture 4: The three-point function of primordial curvature perturbations, 〈Rk1Rk2Rk3〉 =

(2π)3δ(k1 + k2 + k3)BR(k1, k2, k3), can be an additional probe of the physics of inflation if

the primordial fluctuations are sufficiently non-Gaussian.

33 Future Prospects and Open Problems

We have described the present observational evidence for inflation and highlighted future observa-

tional opportunities for further tests of the physics of inflation. Two of the most direct probes of

inflation are primordial tensor modes and primordial non-Gaussianity:

• B-modes

Detecting primordial B-modes (the CMB polarization signature of inflationary tensor modes)

is clearly the most distinctive observation we could make to confirm inflation. We would

measure the energy scale of inflation and learn that the inflaton field moved over a super-

Planckian distance. The European Planck satellite [143], many ground-based or balloon ex-

periments [144–151], as well as the planned CMBPol mission [7, 152], all hope to detect this

signal from the inflationary era. The theoretical community is awaiting the results from these

experiments with great anticipation.

• Non-Gaussianity

A slightly more model-dependent signature of the physics of inflation is the possible exis-

tence of non-Gaussianity in the primordial fluctuations. While predicted to be small for

single-field slow-roll models, models with multiple fields, higher-derivative interactions or non-

trivial vacuum states may leave non-Gaussian signatures. The momentum dependence of the

Fourier-space signal is a powerful diagnostic of the mechanism that laid down the primordial

fluctuations. The Planck satellite will be a sensitive probe of primordial non-Gaussianity.

In these lectures we have presented a rather optimistic view on inflation. While this illustrates

the significant theoretical and observational advances that have been made in recent years in un-

derstanding and constraining the physics of inflation, it ignores important conceptual problems that

the theory still faces. Here we mention some of these theoretical challenges and point to the relevant

literature for more details:

• Initial Conditions

The lectures have mentioned the initial conditions required to start inflation only in a very

superficial way. Partly this is a reflection of the fact that the inflationary initial conditions

aren’t very well understood.

Our simple slow-roll analysis of inflation has assumed that the initial inflaton velocities are

small and that initial inhomogeneities in the inflaton field aren’t large enough to prevent

inflation:
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– The overshoot problem

If the initial inflaton velocity near the region of the potential where inflation is supposed

to occur is non-negligible, it is possible that the field will overshoot that region without

sourcing accelerated expansion. This problem is stronger for small-field models where

Hubble friction is often not efficient enough to slow the field before it reaches the region

of interest.

φ̇ ∼ V 1/2

overshoot

Figure 41: Graphical illustration of the overshoot problem.

– The patch problem

Initial inhomogeneities in the inflaton field provide gradient energy that also hinders

accelerated expansion. Numerical analysis for specific examples shows that typically the

inflaton field has to be smooth over a few times the horizon size at that time to start

inflation.

homogeneous patch

L > H−1

physical horizon
H−1

Figure 42: Graphical illustration of the patch problem.

How severe the fine-tuning of initial conditions really is for inflation cannot be discussed

outside of the incompletely understood topic of eternal inflation and the measure problem.

• Eternal Inflation and the Measure Problem

The modern view of inflation is that globally it never ends! Inflation ends locally to produce

pockets of FRW universes, but there are always region where quantum fluctuations keep the

field at high values of the potential energy. Those regions keep expanding exponentially and

produce more volume of inflationary regions.
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How likely the initial conditions for inflation are and even what the inflationary predictions

themselves are depends on the relative probabilities of the inflationary and non-inflationary

patches of the universe (or multiverse). This is the measure problem. Different probability

measures can significantly affect the probability of inflationary initial conditions and the like-

lihood of FRW universes with certain observable characteristics (like flatness, scale-invariant

fluctuations, etc.)

For more on eternal inflation and the measure problem see Refs. [153–166].

These problems illustrate that there is still room for increasing our theoretical understanding of

inflation and cosmological initial conditions. At the same time, the advent of high-precision mea-

surements of CMB polarization and small-scale temperature fluctuations promises real experimental

test of the inflationary hypothesis.

126



34 Guide to Further Reading

The following textbooks, reviews and papers have been useful to me in the preparation of these

lectures. The student will find valuable further details about inflation in those works.

Textbooks

• Mukhanov, Physical Foundations of Cosmology

A nice treatment of early universe cosmology and the theory of cosmological perturbations.

• Dodelson, Modern Cosmology

An excellent book about cosmology with a strong focus on the cosmic microwave background.

Very readable, i.e. you can read it while lying down.

• Weinberg, Cosmology

It is by Steven Weinberg!

• Liddle and Lyth, Cosmological Inflation and Large-Scale Structure

A comprehensive review of inflationary cosmology.

• Longair, Galaxy Formation

A more astrophysical perspective of cosmology.

• Birrell and Davies, Quantum Field Theory in Curved Spacetime

The classic treatment of quantum field theory in curved spacetime.

Reviews

• Baumann et al., Probing Inflation with CMB Polarization

White paper of the Inflation Working Group of the CMBPol Mission Concept Study. More

than 60 experts on inflation combined to write this very comprehensive review.

• Baumann and Peiris, Cosmological Inflation: Theory and Observations

In this review Hiranya Peiris and I summarize the basics of inflation and CMB observations

for a non-expert audience. The level might be too elementary for the readers of these lectures,

but could be of interest to readers looking for some bedtime reading.

• Baumann and McAllister, Advances in String Inflation

In this review Liam McAllister and I describe the challenge of realizing inflation in string

theory.

• Lyth and Riotto, Particle Physics Models of Inflation

What these lectures lack on inflationary model-building may be found here.

• Bassett et al., Inflation Dynamics and Reheating

What these lectures lack on reheating may be found here.
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• Kinney, TASI Lectures on Inflation

Will Kinney’s lectures at TASI 2008 are perfect as a first read on inflation. It is hoped that

these TASI 2009 lectures make a good second read. I tried to complement Will’s lectures by

giving more technical details.

• Malik and Wands, Cosmological Perturbations

A nice review of first and second-order perturbation theory. Many useful formulas.

• Komatsu, The Pursuit of Non-Gaussian Fluctuations in the Cosmic Microwave Background

Eiichiro Komatsu’s PhD thesis contains a useful review of non-Gaussian fluctuations from

inflation.

Papers

Some of the original papers on inflation are very accessible and well worth reading:

• Guth, Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems

This classic is of course a must-read. It provides a very clear explanation of the Big Bang

puzzles.

• Maldacena, Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary

Models

This paper provided the first rigorous computation of the three-point function for slow-roll

inflation. It also gives one of the clearest and most elegant expositions of the calculation of

the power spectra of inflationary fluctuations. My treatment in these lectures was heavily

inspired by Maldacena’s paper.
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Part VIII

Appendix

A Cosmological Perturbation Theory

In this appendix we summarize basic facts of cosmological perturbation theory. This is based on

unpublished lecture notes of a course at Princeton University by Uros Seljak and Chris Hirata as

well as a review by Malik and Wands [167].

A.1 The Perturbed Universe

We consider perturbations to the homogeneous background spacetime and the stress-energy of the

universe.

A.1.1 Metric Perturbations

The most general first-order perturbation to a spatially flat FRW metric is

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidx
idt+ a2(t)[(1− 2Ψ)δij + 2Eij ]dx

idxj (A.1)

where Φ is a 3-scalar called the lapse, Bi is a 3-vector called the shift, Ψ is a 3-scalar called the

spatial curvature perturbation, and Eij is a spatial shear 3-tensor which is symmetric and traceless,

Eii = δijEij = 0. 3-surfaces of constant time t are called slices and curves of constant spatial

coordinates xi but varying time t are called threads.

A.1.2 Stress-Energy Perturbations

The stress-energy tensor may be described by a density ρ, a pressure p, a 4-velocity uµ (of the frame

in which the 3-momentum density vanishes), and an anisotropic stress Σµν .

Density and pressure perturbations are defined in an obvious way

δρ(t, xi) ≡ ρ(t, xi)− ρ̄(t) , and δp(t, xi) ≡ p(t, xi)− p̄(t) . (A.2)

Here, the background values have been denoted by overbars. The 4-velocity has only three indepen-

dent components (after the metric is fixed) since it has to satisfy the constraint gµνu
µuν = −1. In

the perturbed metric (A.1) the perturbed 4-velocity is

uµ ≡ (−1− Φ, avi) , or uµ ≡ (1− Φ, a−1(vi −Bi)) . (A.3)

Here, u0 is chosen so that the constraint uµu
µ = −1 is satisfied to first order in all perturbations.

Anisotropic stress vanishes in the unperturbed FRW universe, so Σµν is a first-order perturbation.

Furthermore, Σµν is constrained by

Σµνuν = Σµ
µ = 0 . (A.4)

The orthogonality with uµ implies Σ00 = Σ0j = 0, i.e. only the spatial components Σij are non-

zero. The trace condition then implies Σi
i = 0. Anisotropic stress is therefore a traceless symmetric

3-tensor.
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Finally, with these definitions the perturbed stress-tensor is

T 0
0 = −(ρ̄+ δρ) (A.5)

T 0
i = (ρ̄+ p̄) avi (A.6)

T i0 = −(ρ̄+ p̄)(vi −Bi)/a (A.7)

T ij = δij(p̄+ δp) + Σi
j . (A.8)

If there are several contributions to the stress-energy tensor (e.g. photons, baryons, dark matter,

etc.), they are added: Tµν =
∑

I T
I
µν . This implies

δρ =
∑
I

δρI (A.9)

δp =
∑
I

δpI (A.10)

(ρ̄+ p̄)vi =
∑
I

(ρ̄I + p̄I)v
i
I (A.11)

Σij =
∑
I

Σij
I . (A.12)

Density, pressure and anisotropic stress perturbations simply add. However, velocities do not add,

which motivates defining the 3-momentum density

δqi ≡ (ρ̄+ p̄) avi , (A.13)

such that

δqi =
∑
I

δqiI . (A.14)

A.2 Scalars, Vectors and Tensors

The Einstein Equations relate metric perturbations to the stress-energy perturbations. Einstein’s

Equations are both complicated (coupled second-order partial differential equations) and non-linear.

Fortunately, the symmetries of the flat FRW background spacetime allow perturbations to be decom-

posed into independent scalar, vector and tensor components. This reduces the Einstein Equations

to a set of uncoupled ordinary differential equations.

A.2.1 Helicity and SVT-Decomposition in Fourier Space

The decomposition into scalar, vector and tensor perturbations is most elegantly explained in Fourier

space. We define the Fourier components of a general perturbation δQ(t,x) as follows

δQ(t,k) =

∫
d3x δQ(t,x)e−ik·x . (A.15)

First note that as a consequence of translation invariance different Fourier modes (different wavenum-

bers k) evolve independently.28

28The following proof was related to me by Uros Seljak and Chris Hirata.
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Proof:

Consider the linear evolution of N perturbations δQI , I = 1, . . . , N from an initial time t1 to a

final time t2

δQI(t2,k) =

N∑
J=1

∫
d3k̄ TIJ(t2, t1,k, k̄)δQJ(t1, k̄) , (A.16)

where the transfer matrix TIJ(t2, t1,k, k̄) follows from the Einstein Equations and we have allowed

for the possibility of a mixing of k-modes. We now show that translation invariance in fact forbids

such couplings. Consider the coordinate transformation

xi
′

= xi + ∆xi , where ∆xi = const. (A.17)

You may convince yourself that the Fourier amplitude gets shifted as follows

δQ′I(t,k) = e−ikj∆x
j
δQI(t,k) . (A.18)

Thus the evolution equation in the primed coordinate system becomes

δQ′I(t2,k) =
N∑
J=1

∫
d3k̄ e−ikj∆x

j
TIJ(t2, t1,k, k̄)eik̄j∆x

j
δQ′J(t1, k̄) (A.19)

≡
N∑
J=1

∫
d3k̄ T ′IJ(t2, t1,k, k̄)δQJ(t1, k̄) . (A.20)

By translation invariance the equations of motion must be the same in both coordinate systems,

i.e. the transfer matrices TIJ and T ′IJ must be the same

TIJ(t2, t1,k, k̄) = ei(k̄j−kj)∆x
j
TIJ(t2, t1,k, k̄) . (A.21)

This must hold for all ∆xj . Hence, either k̄ = k or TIJ(t2, t1; k, k̄) = 0, i.e. the perturbation

δQI(t2,k) of wavevector k depends only on the initial perturbations of wavevector k. At linear

order there is no coupling of different k-modes. QED.

Now consider rotations around the Fourier vector k by an angle ψ. We classify perturbations

according to their helicity m: a perturbation of helicity m has its amplitude multiplied by eimψ

under the above rotation. We define scalar, vector and tensor perturbations as having helicities 0,

±1, ±2, respectively.

Consider a Fourier mode with wavevector k. Without loss of generality we may assume that

k = (0, 0, k) (or use rotational invariance of the background). The spatial dependence of any

perturbation then is

δQ ∝ eikx3 . (A.22)

To study rotations around k it proves convenient to switch to the helicity basis

e± ≡
e1 ± ie2√

2
, e3 , (A.23)
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where {e1, e2, e3} is the Cartesian basis. A rotation around the 3-axis by an angle ψ has the following

effect (
x1′

x2′

)
=

(
cosψ sinψ

− sinψ cosψ

)(
x1

x2

)
, x3′ = x3 , (A.24)

and

e′± = e±iψe± , e′3 = e3 . (A.25)

The contravariant components of any tensor Ti1i2...in transform as

T ′i1i2...in = ei(n+−n−)ψTi1i2...in ≡ eimψTi1i2...in (A.26)

where n+ and n− count the number of plus and minus indices in i1 . . . in, respectively. Helicity is

defined as the difference m ≡ n+ − n−.

In the helicity basis {e±, e3}, a 3- scalar α has a single component with no indicies and is

therefore obviously of helicity 0; a 3-vector βi has 3 components β+, β−, β3 of helicity ±1 and 0;

a symmetric and traceless 3-tensor γij has 5 components γ−−, γ++, γ−3, γ+3, γ33 (the tracelessness

condition makes γ−+ redundant), of helicity ±2, ±1 and 0.

Rotational invariance of the background implies that helicity scalars, vectors and tensors evolve

independently.29

Proof:

Consider N perturbations δQI , I = 1, . . . , N of helicity mI . The linear evolution is

δQI(t2,k) =
N∑
J=1

TIJ(t2, t1,k)δQJ(t1,k) , (A.27)

where the transfer matrix TIJ(t2, t1,k) follows from the Einstein Equations. Under rotation the

perturbations transform as

δQ′I(t,k) = eimIψδQI(t,k) (A.28)

and

δQ′I(t2,k) =
N∑
J=1

eimIψ TIJ(t2, t1,k) e−imJψδQ′J(t1,k) . (A.29)

By rotational invariance of the equations of motion

TIJ(t2, t1,k) = eimIψ TIJ(t2, t1,k) e−imJψ = ei(mI−mJ )ψTIJ(t2, t1,k) , (A.30)

which has to hold for any angle ψ; it follows that eithers mI = mJ , i.e. δQI and δQJ have the same

helicity or TIJ(t2, t1,k) = 0. This proves that the equations of motion don’t mix modes of different

helicity. QED.

29The following proof was related to me by Uros Seljak and Chris Hirata.
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A.2.2 Real Space SVT-Decomposition

In the last section we have seen that 3-scalars correspond to helicity scalars, 3-vectors decompose

into helicity scalars and vectors, and 3-tensors decompose into helicity scalars, vectors and tensors.

We now look at this from a different perspective.

A 3-scalar is obviously also a helicity scalar

α = αS . (A.31)

Consider a 3-vector βi. We argue that it can be decomposed as

βi = βSi + βVi , (A.32)

where

βSi = ∇iβ̂ , ∇iβVi = 0 , (A.33)

or, in Fourier space,

βSi = − iki
k
β , kiβ

V
i = 0 . (A.34)

Here, we have defined β ≡ kβ̂.

Exercise 12 (Helicity Vector) Show that βVi is a helicity vector.

Similarly, a traceless, symmetric 3-tensor can be written as

γij = γSij + γVij + γTij , (A.35)

where

γSij =

(
∇i∇j −

1

3
δij∇2

)
γ̂ (A.36)

γVij =
1

2
(∇iγ̂j +∇j γ̂i) , ∇iγ̂i = 0 (A.37)

∇iγTij = = 0 . (A.38)

or

γSij =

(
−kikj
k2

+
1

3
δij

)
γ (A.39)

γVij = − i

2k
(kiγj + kjγi) , kiγi = 0 (A.40)

kiγ
T
ij = = 0 . (A.41)

Here, we have defined γ ≡ k2γ̂ and γi ≡ kγ̂i.

Exercise 13 (Helicity Vectors and Tensors) Show that γVij and γTij are a helicity vector and a

helicity tensor, respectively.
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Choosing k along the 3-axis, i.e. k = (0, 0, k) we find

γSij =
1

3

 γ 0 0

0 γ 0

0 0 −2γ

 (A.42)

γVij = − i
2

 0 0 γ1

0 0 γ2

γ1 γ2 0

 (A.43)

γTij =

 γ× γ+ 0

γ+ −γ× 0

0 0 0

 . (A.44)

A.3 Scalars

A.3.1 Metric Perturbations

Four scalar metric perturbations Φ, B,i, Ψδij and E,ij may be constructed from 3-scalars, their

derivatives and the background spatial metric, i.e.

ds2 = −(1 + 2Φ)dt2 + 2a(t)B,idx
idt+ a2(t)[(1− 2Ψ)δij + 2E,ij ]dx

idxj (A.45)

Here, we have absorbed the ∇2E δij part of the helicity scalar ESij in Ψ δij .

The intrinsic Ricci scalar curvature of constant time hypersurfaces is

R(3) =
4

a2
∇2Ψ . (A.46)

This explains why Ψ is often referred to as the curvature perturbation.

There are two scalar gauge transformations

t → t+ α , (A.47)

xi → xi + δijβ,j . (A.48)

Under these coordinate transformations the scalar metric perturbations transform as

Φ → Φ− α̇ (A.49)

B → B + a−1α− aβ̇ (A.50)

E → E − β (A.51)

Ψ → Ψ +Hα . (A.52)

Note that the combination Ė−B/a is independent of the spatial gauge and only depends on the

temporal gauge. It is called the scalar potential for the anisotropic shear of world lines orthogonal

to constant time hypersurfaces. To extract physical results it is useful to define gauge-invariant

combinations of the scalar metric perturbations. Two important gauge-invariant quantities were

introduced by Bardeen [20]

ΦB ≡ Φ− d

dt
[a2(Ė −B/a)] (A.53)

ΨB ≡ Ψ + a2H(Ė −B/a) . (A.54)
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A.3.2 Matter Perturbations

Matter perturbations are also gauge-dependent, e.g. density and pressure perturbations transform

as follows under temporal gauge transformations

δρ→ δρ− ˙̄ρα , δp→ δp− ˙̄pα . (A.55)

Adiabatic pressure perturbations are defined as

δpad ≡
˙̄p
˙̄ρ
δρ . (A.56)

The non-adiabiatic, or entropic, part of the pressure perturbations is then gauge-invariant

δpen ≡ δp−
˙̄p
˙̄ρ
δρ . (A.57)

The scalar part of the 3-momentum density, (δq),i, transforms as

δq → δq + (ρ̄+ p̄)α . (A.58)

We may then define the gauge-invariant comoving density perturbation

δρm ≡ δρ− 3Hδq . (A.59)

Finally, two important gauge-invariant quantities are formed from combinations of matter and

metric perturbations. The curvature perturbation on uniform density hypersurfaces is

− ζ ≡ Ψ +
H
˙̄ρ
δρ . (A.60)

The comoving curvature perturbation is

R = Ψ− H

ρ̄+ p̄
δq . (A.61)

We will show that ζ and R are equal on superhorizon scales, where they become time-independent.

The computation of the inflationary perturbation spectrum is most clearly phrased in terms of ζ

and R.

A.3.3 Einstein Equations

To relate the metric and stress-energy perturbations, we consider the perturbed Einstein Equations

δGµν = 8πGδTµν . (A.62)

We work at linear order. This leads to the energy and momentum constraint equations

3H(Ψ̇ +HΦ) +
k2

a2

[
Ψ +H(a2Ė − aB)

]
= −4πGδρ (A.63)

Ψ̇ +HΦ = −4πGδq . (A.64)
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These can be combined into the gauge-invariant Poisson Equation

k2

a2
ΨB = −4πGδρm . (A.65)

The Einstein equation also yield two evolution equations

Ψ̈ + 3HΨ̇ +HΦ̇ + (3H2 + 2Ḣ)Φ = 4πG

(
δp− 2

3
k2δΣ

)
(A.66)

(∂t + 3H)(Ė −B/a) +
Ψ− Φ

a2
= 8πGδΣ . (A.67)

The last equation may be written as

ΨB − ΦB = 8πGa2δΣ . (A.68)

In the absence of anisotropic stress this implies, ΨB = ΦB.

Energy-momentum conservation, ∇µTµν = 0, gives the continuity equation and the Euler Equa-

tion

δ̇ρ+ 3H(δρ+ δp) =
k2

a2
δq + (ρ̄+ p̄)[3Ψ̇ + k2(Ė +B/a)] , (A.69)

δ̇q + 3Hδq = −δp+
2

3
k2δΣ− (ρ̄+ p̄)Φ . (A.70)

Expressed in terms of the curvature perturbation on uniform-density hypersurfaces, ζ, Eqn. (A.69)

reads

ζ̇ = −H δpen
ρ̄+ p̄

−Π , (A.71)

where δpen is the non-adiabatic component of the pressure perturbation, and Π is the scalar shear

along comoving worldlines

Π

H
≡ − k2

3H

[
Ė −B/a+

δq

a2(ρ̄+ p̄)

]
(A.72)

= − k2

3a2H2

[
ζ −ΨB

(
1− 2ρ̄

9(ρ̄+ p̄)

k2

a2H2

)]
. (A.73)

For adiabative perturbations, δpen = 0 on superhorizon scales, k/(aH)� 1 (i.e. Π/H → 0 for finite

ζ and ΨB), the curvature perturbation ζ is constant. This is a crucial result for our computation of

the inflationary spectrum of ζ in Lecture 2. It justifies computing ζ at horizon exit and ignoring

superhorizon evolution.

A.3.4 Popular Gauges

For reference we now give the Einstein Equations and the conservation equations is various popular

gauges:

• Synchronous gauge

A popular gauge, especially for numerical implementation of the perturbation equations (cf. CMB-

FAST [29] or CAMB [30]), is synchronous gauge. It is defined by

Φ = B = 0 . (A.74)
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The Einstein Equations become

3HΨ̇ +
k2

a2

[
Ψ +Ha2Ė

]
= −4πGδρ (A.75)

Ψ̇ = −4πGδq (A.76)

Ψ̈ + 3HΨ̇ = 4πG

(
δp− 2

3
k2δΣ

)
(A.77)

(∂t + 3H)Ė +
Ψ

a2
= 8πGδΣ . (A.78)

The conservation equation are

δ̇ρ+ 3H(δρ+ δp) =
k2

a2
δq + (ρ̄+ p̄)[3Ψ̇ + k2Ė] (A.79)

δ̇q + 3Hδq = −δp+
2

3
k2δΣ . (A.80)

• Newtonian gauge

The Newtonian gauge has its name because it reduces to Newtonian gravity in the small-scale

limit. It is popular for analytic work since it leads to algebraic relations between metric and

stress-energy perturbations.

Newtonian gauge is defined by

B = E = 0 , (A.81)

and

ds2 − (1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj . (A.82)

The Einstein Equations are

3H(Ψ̇ +HΦ) +
k2

a2
Ψ = −4πGδρ (A.83)

Ψ̇ +HΦ = −4πGδq (A.84)

Ψ̈ + 3HΨ̇ +HΦ̇ + (3H2 + 2Ḣ)Φ = 4πG

(
δp− 2

3
k2δΣ

)
(A.85)

Ψ− Φ

a2
= 8πGδΣ . (A.86)

The continuity equations are

δ̇ρ+ 3H(δρ+ δp) =
k2

a2
δq + 3(ρ̄+ p̄)Ψ̇ , (A.87)

δ̇q + 3Hδq = −δp+
2

3
k2δΣ− (ρ̄+ p̄)Φ . (A.88)

• Uniform density gauge

The uniform density gauge is useful for describing the evolution of perturbations on super-

horizon scales. As its name suggests it is defined by

δρ = 0 . (A.89)
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In addition, it is convenient to take

E = 0 , −Ψ ≡ ζ . (A.90)

The Einstein Equations are

3H(−ζ̇ +HΦ)− k2

a2
[ζ + aHB] = 0 (A.91)

−ζ̇ +HΦ = −4πGδq (A.92)

−ζ̈ − 3Hζ̇ +HΦ̇ + (3H2 + 2Ḣ)Φ = 4πG

(
δp− 2

3
k2δΣ

)
(A.93)

(∂t + 3H)B/a+
ζ + Φ

a2
= −8πGδΣ . (A.94)

The continuity equations are

3Hδp =
k2

a2
δq + (ρ̄+ p̄)[−3ζ̇ + k2B/a] , (A.95)

δ̇q + 3Hδq = −δp+
2

3
k2δΣ− (ρ̄+ p̄)Φ . (A.96)

• Comoving gauge

Comoving gauge is defined by the vanishing of the scalar momentum density,

δq = 0 , E = 0 . (A.97)

It is also conventional to set −Ψ ≡ R in this gauge.

The Einstein Equations are

3H(−Ṙ+HΦ) +
k2

a2
[−R− aHB] = −4πGδρ (A.98)

−Ṙ+HΦ = 0 (A.99)

−R̈ − 3HṘ+HΦ̇ + (3H2 + 2Ḣ)Φ = 4πG

(
δp− 2

3
k2δΣ

)
(A.100)

(∂t + 3H)B/a+
R+ Φ

a2
= −8πGδΣ . (A.101)

The continuity equations are

δ̇ρ+ 3H(δρ+ δp) = (ρ̄+ p̄)[−3Ṙ+ k2B/a] . (A.102)

0 = −δp+
2

3
k2δΣ− (ρ̄+ p̄)Φ . (A.103)

Equations (A.103) and (A.99) may be combined into

Φ =
−δp+ 2

3Σ

ρ̄+ p̄
, kB =

4πGa2δρ− k2R
aH

. (A.104)
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• Spatially-flat gauge

A convenient gauge for computing inflationary perturbation is spatially-flat gauge

Ψ = E = 0 . (A.105)

During inflation all scalar perturbations are then described by δφ.

The Einstein Equations are

3H2Φ +
k2

a2
[−aHB)] = −4πGδρ (A.106)

HΦ = −4πGδq (A.107)

HΦ̇ + (3H2 + 2Ḣ)Φ = 4πG

(
δp− 2

3
k2δΣ

)
(A.108)

(∂t + 3H)B/a+
Φ

a2
= −8πGδΣ . (A.109)

The continuity equations are

δ̇ρ+ 3H(δρ+ δp) =
k2

a2
δq + (ρ̄+ p̄)[k2B/a] , (A.110)

δ̇q + 3Hδq = −δp+
2

3
k2δΣ− (ρ̄+ p̄)Φ . (A.111)

A.4 Vectors

A.4.1 Metric Perturbations

Vector type metric perturbations are defined as

ds2 = −dt2 + 2a(t)Sidx
idt+ a2(t)[δij + 2F(i,j)]dx

idxj , (A.112)

where Si,i = Fi,i = 0. The vector gauge transformation is

xi → xi + βi , βi,i = 0 . (A.113)

They lead to the transformations

Si → Si + aβ̇i , (A.114)

Fi → Fi − βi . (A.115)

The combination Ḟi + Si/a is called the gauge-invariant vector shear perturbation.

A.4.2 Matter Perturbations

We define the vector part of the anisotropic stress by

δΣij = ∂(iΣj) , (A.116)

where Σi is divergence-free, Σi,i = 0.
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A.4.3 Einstein Equations

For vector perturbations there are only two Einstein Equations,

˙δqi + 3Hδqi = k2δΣi , (A.117)

k2(Ḟi + Si/a) = 16πGδqi . (A.118)

In the absence of anisotropic stress (δΣi = 0) the divergence-free momentum δqi decays with the

expansion of the universe; see Eqn. (A.117). The shear perturbation Ḟi + Si/a then vanishes by

Eqn. (A.118). Under most circumstances vector perturbations are therefore subdominant. They

won’t play an important role in these lectures. In particular, vector perturbations aren’t created by

inflation.

A.5 Tensors

A.5.1 Metric Perturbations

Tensor metric perturbations are defined as

ds2 = −dt2 + a2(t)[δij + hij ]dx
idxj , (A.119)

where hij,i = hii = 0. Tensor perturbations are automatically gauge-invariant (at linear order). It is

conventional to decompose tensor perturbations into eigenmodes of the spatial Laplacian, ∇2eij =

−k2eij , with comoving wavenumber k and scalar amplitude h(t),

hij = h(t)e
(+,×)
ij (x) . (A.120)

Here, + and × denote the two possible polarization states.

A.5.2 Matter Perturbations

Tensor perturbations are sourced by anisotropic stress Σij , with Σij,i = Σi
i = 0. It is typically a

good approximation to assume that the anisotropic stress is negligible, although a small amplitude

is induced by neutrino free-streaming.

A.5.3 Einstein Equations

For tensor perturbations there is only one Einstein Equation. In the absence of anisotropic stress

this is

ḧ+ 3Hḣ+
k2

a2
h = 0 . (A.121)

This is a wave equation describing the evolution of gravitational waves in an expanding universe.

Gravitational waves are produced by inflation, but then decay with the expansion of the universe.

However, at recombination their amplitude may still be large enough to leave distinctive signatures

in B-modes of CMB polarization.
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A.6 Statistics

We recall some basic facts about statistics. More details may be found in Licia Verde’s notes [168].

A.6.1 Fourier Conventions

Different conventions exist for the normalization of Fourier transforms. Defining

Rk = A

∫
d3xR(x) e−ik·x , (A.122)

R(x) = B

∫
d3kRk e

ik·x , (A.123)

implies that the Dirac delta function is

δ(k) = BA

∫
d3x e±ik·x , BA =

1

(2π)3
. (A.124)

Except for the constraint BA = 1/(2π)3 different conventions are possible for the values of A and

B. These conventions can lead to some confusion about factors of 2π in the normalization of the

power spectrum. In the main text we follow the convention A = 1, B = 1/(2π)3 (the other common

convention is A = B = 1/(2π)3/2; it is nice, since it makes the basis function eikx orthonormal rather

than just orthogonal.), but in this appendix we will keep things general in order to help identifying

normalization errors in the literature.

A.6.2 Two-Point Correlation Function

We make frequent use of the two-point correlation function

ξR(r) ≡ 〈R(x)R(x + r)〉 . (A.125)

Here, we have made the assumption that by isotropy ξ depends only on r ≡ |r| (distance not

orientation).

A.6.3 Power Spectrum

Consider the following ensemble average

〈RkRk′〉 , (A.126)

where R∗k = R−k because R(x) is real. Substituting (A.122) gives

〈RkRk′〉 = A2

∫
d3x e−i(k+k′)x

∫
d3r ξR(r)e−ikr (A.127)

=
A

B
δ(k + k′)

∫
d3r ξR(r)e−ikr . (A.128)

If we define the power spectrum as the Fourier transform of the two-point correlation function

PR(k) ≡ A
∫

d3r ξR(r) e−ik·r , (A.129)
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then we get

〈RkRk′〉 =
1

B
PR(k)δ(k + k′) . (A.130)

Notice that often the power spectrum is defined as

〈RkRk′〉 = (2π)3PR(k)δ(k + k′) . (A.131)

In the present discussion we realize that this implies a fixed Fourier convention, B = 1/(2π)3, if we

mean by the power spectrum really the Fourier transform of the two-point function; this is often not

done correctly in the literature.

Consider the variance

σ2
R ≡ 〈R2(x)〉 = ξR(0) = B

∫
d3k PR(k) . (A.132)

This is often defined as

σ2
R ≡

∫
d ln k∆2

R(k) , (A.133)

where

∆2
R(k) ≡ 4πB k3PR(k) . (A.134)

In the common Fourier convention B = 1/(2π)3 this becomes

∆2
R(k) ≡ k3

2π2
PR(k) . (A.135)

For other Fourier conventions the relation between ∆2
R(k) and PR(k) will differ by a numerical

factor.

A.6.4 Bispectrum

For Gaussian perturbations the power spectrum contains all the information (all higher-order corre-

lation functions can be expressed in terms of the two-point function). Non-Gaussianity is measured

by a non-zero three-point function, or equivalently in Fourier space the bispectrum

〈Rk1Rk2Rk3〉 = (2π)3BR(k1, k2, k3)δ(k1 + k2 + k3) . (A.136)
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B Free Field Action for R
In this appendix we compute the second-order action for the comoving curvature perturbation R.

This is a basic element for the quantization of cosmological scalar perturbations in Lecture 2.

We consider slow-roll models of inflation which are described by a canonical scalar field φ mini-

mally coupled to gravity

S =
1

2

∫
d4x
√−g

[
R− (∇φ)2 − 2V (φ)

]
, (A.137)

in units where M−2
pl ≡ 8πG = 1. We will study perturbations of this action due to fluctuations in

the scalar field δφ(t, xi) ≡ φ(t, xi) − φ̄(t) and the metric. We will treat metric fluctuations in the

ADM formalism (Arnowitt-Deser-Misner) [169].

B.1 Slow-Roll Background

We consider a flat background metric

ds2 = −dt2 + a(t)2δijdx
idxj = a2(τ)(−dτ2 + δijdx

idxj) , (A.138)

with scale factor a(t) and Hubble parameter H(t) ≡ ∂t ln a satisfying the Friedmann Equations

3H2 =
1

2
φ̇2 + V (φ) , Ḣ = −1

2
φ̇2 . (A.139)

The scalar field satisfies the Klein-Gordon Equation

φ̈+ 3Hφ̇+ V,φ = 0 . (A.140)

The standard slow-roll parameters are

εv =
1

2

(V,φ
V

)2
≈ 1

2

φ̇2

H2
, ηv =

V,φφ
V
≈ − φ̈

Hφ̇
+

1

2

φ̇2

H2
. (A.141)

B.2 ADM Formalism

We treat fluctuations in the ADM formalism [169] where spacetime is sliced into three-dimensional

hypersurfaces

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) . (A.142)

Here, gij is the three-dimensional metric on slices of constant t. The lapse function N(x) and the

shift function Ni(x) contain the same information as the metric perturbations Φ and B in (A.45).

However, they were chosen in such a way that they appear as non-dynamical Lagrange multipliers

in the action, i.e. their equations of motion are purely algebraic. The action (A.137) becomes

S =
1

2

∫
d4x
√−g

[
NR(3) − 2NV +N−1(EijE

ij − E2)+

N−1(φ̇−N i∂iφ)2 −Ngij∂iφ∂jφ− 2V
]
, (A.143)

where

Eij ≡
1

2
(ġij −∇iNj −∇jNi) , E = Eii . (A.144)

Eij is related to the extrinsic curvature of the three-dimensional spatial slices Kij = N−1Eij .
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Exercise 14 (ADM Action) Confirm Eqn. (A.143).

B.2.1 Comoving Gauge

To fix time and spatial reparameterizations we choose the following gauge for the dynamical fields

gij and φ

δφ = 0 , gij = a2[(1− 2R)δij + hij ] , ∂ihij = hii = 0 . (A.145)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are parameterized

by the metric fluctuation R(t,x). Geometrically, R measures the spatial curvature of constant-φ

hypersurfaces, R(3) = 4∇2R/a2. An important property of R is that it remains constant outside

the horizon. This allows us in Lecture 2 to restrict our computation to correlation functions at

horizon crossing.

B.2.2 Constraint Equations

The ADM action (A.143) implies the following constraint equations for the Lagrange multipliers N

and N i

∇i[N−1(Eij − δijE)] = 0 , (A.146)

R(3) − 2V −N−2(EijE
ij − E2)−N−2φ̇2 = 0 . (A.147)

Exercise 15 (Constraint Equations) Derive the constraint equations (A.146) and (A.147) from

the ADM action (A.143).

To solve the constraints, we split the shift vector Ni into irrotational (scalar) and incompressible

(vector) parts

Ni ≡ ψ,i + Ñi , where Ñi,i = 0 , (A.148)

and define the lapse perturbation as

N ≡ 1 + α . (A.149)

The quantities α, ψ and Ñi then admit expansions in powers of R,

α = α1 + α2 + . . . ,

ψ = ψ1 + ψ2 + . . . ,

Ñi = Ñ
(1)
i + Ñ

(2)
i + . . . , (A.150)

where, e.g. αn = O(Rn). The constraint equations may then be set to zero order-by-order.

Exercise 16 (First-Order Solution of Constraint Equations) Show that at first order (A.147)

implies

α1 =
Ṙ
H
, ∂2Ñ

(1)
i = 0 . (A.151)

With an appropriate choice of boundary conditions one may set Ñ
(1)
i ≡ 0. Show that at first order

Eqn. (A.146) implies

ψ1 = −R
H

+
a2

H
εv ∂

−2Ṙ , (A.152)

where ∂−2 is defined via ∂−2(∂2φ) = φ.
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B.2.3 The Free Field Action

Substituting the first-order solutions for N and Ni back into the action, one finds the following

second-order action [24]

S2 =
1

2

∫
d4x a3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (A.153)

Exercise 17 (Second-Order Action) Confirm Eqn. (A.153). Hint: use integration by parts and

the background equations of motion.

The quadratic action (A.153) for R is the main result of this appendix and forms the basis for

the quantization of cosmological perturbations in Lecture 2.
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C A Brief Review of the In-In Formalism

The problem of computing correlation functions in cosmology differs in important ways from the

corresponding analysis of quantum field theory applied to particle physics. In particle physics the

central object is the S-matrix describing the transition probability for a state in the far past |ψ〉
to become some state |ψ′〉 in the far future, 〈ψ′|S|ψ〉 = 〈ψ′(+∞)|ψ(−∞)〉. Imposing asymptotic

conditions at very early and very late times makes sense in this case, since in Minkowski space,

states are assumed to non-interacting in the far past and the far future, i.e. the asymptotic state

are taken to be vacuum state of the free Hamiltonian H0.

In cosmology, however, we evaluate the expectation values of products of fields at a fixed time.

Conditions are not imposed on the fields at both very early and very late times, but only at very

early times, when the wavelength is deep inside the horizon. As we argued in Lecture 2, in this

limit (according to the equivalence principle) the interaction picture fields should have the same firm

as in Minkowski space. This lead us to the definition of the Bunch-Davies vacuum (the free vacuum

in Minkowski space).

In this appendix we describe the Schwinger-Keldysh “in-in” formalism [87] to compute cosmo-

logical correlation functions. After pioneering work by Calzetta and Hu [88] and Jordan [89] the

application of the “in-in” formalism to cosmological problems was recently revived by Maldacena [24]

and Weinberg [90] (see also [170, 171]).

C.1 Time Evolution in the Interaction Picture

To describe the time evolution of cosmological perturbations we split the Hamiltonian into a free

part and an interacting part

H = H0 +Hint . (A.154)

The free-field Hamiltonian H0 is quadratic in perturbations. Quadratic order was sufficient to

compute the two-point correlations of Lecture 2. However, the higher-order correlations that

concerned us in our study of non-Gaussianity in Lecture 4 require going beyond quadratic order

and defining the interaction Hamiltonian Hint. The interaction Hamiltonian defines the evolution of

states via the well-known time-evolution operator

U(τ2, τ1) = T exp

(
−i
∫ τ2

τ1

dτ ′Hint(τ
′)

)
, (A.155)

where T denotes the time-ordering operator. The time-evolution operator U may be used to relate

the interacting vacuum at arbitrary time |Ω(τ)〉 to the free (Bunch-Davies) vacuum |0〉. We first

expand Ω(τ) in eigenstates of the free Hamiltonian,

|Ω〉 =
∑
n

|n〉〈n|Ω(τ)〉 . (A.156)

Then we evolve |Ω(τ)〉 as

|Ω(τ2)〉 = U(τ2, τ1)|Ω(τ1)〉 = |0〉〈0|Ω〉+
∑
n≥1

e+iEn(τ2−τ1)|n〉〈n|Ω(τ1)〉 . (A.157)
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C.2 |in〉 Vacuum

From Eqn. (A.157) we see that the choice τ2 = −∞(1− iε) projects out all excited states. Hence, we

have the following relation between the interacting vacuum at τ = −∞(1− iε) and the free vacuum

|0〉
|Ω(−∞(1− iε))〉 = |0〉〈0|Ω〉 . (A.158)

Finally, the interacting vacuum at an arbitrary time τ is

|in〉 ≡ |Ω(τ)〉 = U(τ,−∞(1− iε))|Ω(−∞(1− iε))〉 (A.159)

= T exp

(
−i
∫ τ

−∞(1−iε)
dτ ′Hint(τ

′)

)
|0〉〈0|Ω〉 . (A.160)

C.3 Expectation Values

In the “in-in” formalism, the expectation value 〈W (τ)〉, of a product of operators W (τ) at time τ ,

is evaluated as30

〈W (τ)〉 ≡ 〈in|W (τ)|in〉
〈in|in〉 (A.161)

=
〈

0
∣∣∣ (Te−i ∫ τ−∞+ Hint(τ

′)dτ ′
)†
W (τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 , (A.162)

or

〈W (τ)〉 =
〈

0
∣∣∣ (T̄ e−i ∫ τ−∞− Hint(τ

′)dτ ′
)
W (τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 , (A.163)

where we defined the anti-time-ordering operator T̄ and the notation −∞± ≡ −∞(1 ∓ iε). This

definition of the correlation functions 〈W (τ)〉 in terms of the interaction Hamiltonian Hint is the

main result of the “in-in” formalism. The interaction Hamiltonian is computed in the ADM approach

to General Relativity [24] and 〈W (τ)〉 is then evaluated perturbatively.

In Lecture 4 this formalism was implicitly used to compute the three-point functions for various

inflationary models,

〈Rk1Rk2Rk3〉(τ) =
〈

0
∣∣∣ (T̄ e−i ∫ τ−∞− Hint(τ

′)dτ ′
)
Rk1(τ)Rk2(τ)Rk3(τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 .

(A.164)

C.4 Interaction Hamiltonian

Let us sketch how the interaction Hamiltonian is computed:31 The inflationary action is expanded

perturbatively

S = S0[φ̄, ḡµν ] + S2[R2] + S3[R3] + · · · . (A.165)

Here, we have defined a background part S0, a quadratic free-field part S2 and a non-linear interaction

term S3. The background action S0 defines the Hubble parameter H and the slow-roll parameters

ε and η. The free-field action S2 defines the time-evolution of the mode functions R(τ) in the

30For a derivation of this result see Weinberg [90].
31For a sample calculation that shows the full (painful) details see Maldacena [24].
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interaction picture (often denoted byRI(τ)). The non-linear part of the action defines the interaction

Hamiltonian, e.g. at cubic order S3 = −
∫

dτHint(RI). Schematically, the interaction Hamiltonian

takes the following form

Hint =
∑
i

fi(ε, η, . . . )R3
I (τ) . (A.166)

C.5 Perturbative Expansion

In Lecture 2 we defined the expansion of the operator corresponding to the Mukhanov variable,

v = 2a2εR, in terms of creation and annihilation operators

v̂k(τ) = vk(τ)âk + v∗k(τ)â†−k . (A.167)

The mode functions vk(τ) were defined uniquely by initial state boundary conditions when all modes

were deep inside the horizon

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (A.168)

The free two-point correlation function is

〈0|v̂k1(τ1)v̂k2(τ2)|0〉 = (2π)3δ(k1 + k2)Gk1(τ1, τ2) , (A.169)

with

Gk1(τ1, τ2) ≡ vk(τ1)v∗k(τ2) . (A.170)

Expansion of Eqn. (A.164) in powers of Hint gives:

• at zeroth order

〈W (τ)〉(0) = 〈0|W (τ)|0〉 , (A.171)

where W (τ) ≡ Rk1(τ)Rk2(τ)Rk3(τ).

• at first order

〈W (τ)〉(1) = 2 Re

[
−i
∫ τ

−∞+

dτ ′〈0|W (τ)Hint(τ
′)|0〉

]
. (A.172)

• at second order

〈W (τ)〉(2) = −2 Re

[∫ τ

−∞+

dτ ′
∫ τ ′

−∞+

dτ ′′〈0|W (τ)Hint(τ
′)Hint(τ

′′)|0〉
]

+

∫ τ

−∞−
dτ ′
∫ τ

−∞+

dτ ′′〈0|Hint(τ
′)W (τ)Hint(τ

′′)|0〉 . (A.173)

In the bispectrum calculations of Lecture 2 the zeroth-order term (A.171) vanishes for Gaussian

initial conditions. The leading result therefore comes from Eqn. (A.172). Evaluating Eqn. (A.172)

makes use of Wick’s theorem to expresses the result as products of two-point functions (A.170).
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D Slow-Roll Inflation in the Hamilton-Jacobi Approach

In these lectures we have defined exact slow-roll conditions via the parameters

ε = − Ḣ

H2
, η = − φ̈

Hφ̇
, (B.1)

and approximate conditions via

εv =
M2

pl

2

(
V,φ
V

)2

, ηv = M2
pl

V,φφ
V

. (B.2)

In this appendix we explore their relationship in more detail.

D.1 Hamilton-Jacobi Formalism

The Hamilton-Jacobi approach treats the Hubble expansion rate H(φ) = H/a as the fundamental

quantity, considered as a function of time. Consider

H,φ =
H ′

φ′
=
−(H2 −H′)/a

φ′
= − φ

′

2a
, (B.3)

where we used H2−H′ = a2(ρ+p)/2 = (φ′)2/2 and primes are derivatives with respect to conformal

time. This gives the master equation

dφ

dt
=
φ′

a
= −2H,φ . (B.4)

This allows us to rewrite the Friedmann Equation

H2 =
1

3

[
1

2

(
dφ

dt

)2

+ V (φ)

]
(B.5)

in the following way

[H,φ]2 − 3

2
H2 = −1

2
V (φ) . (B.6)

Notice the following important consequence of the Hamilton-Jacobi Equation (B.6): For any specified

function H(φ), it produces a potential V (φ) which admits the given H(φ) as an exact inflationary

solution. Integrating Eqn. (B.4) ∫
dt = −1

2

∫
dφ

H ′(φ)
(B.7)

relates φ to proper time t. This enables us to obtain H(t), which can be integrated to give a(t). The

Hamilton-Jacobi formalism can therefore be used to generate infinitely many inflationary models

with exactly known analytic solutions for the background expansion. However, here we are more

concerned with the fact that it allows an elegant and intuitive definition of the slow-roll parameters.
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D.2 Hubble Slow-Roll Parameters

During slow-roll inflation the background spacetime is approximately de Sitter. Any deviation of

the background equation of state

w =
p

ρ
=

(φ′)2/2a2 − V
(φ′)2/2a2 + V

(B.8)

from the perfect de Sitter limit w = −1 may be defined by the parameter

ε ≡ 3

2
(1 + w) . (B.9)

We can express the Friedmann Equations

H2 =
1

3
a2ρ (B.10)

H′ = −1

6
a2(ρ+ 3p) (B.11)

in terms of ε

H2 =
1

3

(φ′)2

ε
(B.12)

H′ = H2(1− ε) . (B.13)

Hence,

ε = 1− H
′

H2
=
d(H−1)

dt
= − Ḣ

H2
. (B.14)

Note that this can be interpreted as the rate ot change of the Hubble parameter H with respect to

the number of e-foldings dN = Hdt = −1
2
H(φ)
H,φ

dφ

ε = −d lnH

dN
= 2

(
H,φ

H

)2

. (B.15)

Analogously we define the second slow-roll parameter as the rate of change of H,φ

η = −d ln |H,φ|
dN

= 2
H,φφ

H
. (B.16)

Using Eqn. (B.4) this is also

η =
d ln |φ̇|
dN

. (B.17)

D.3 Slow-Roll Inflation

By definition, slow-roll corresponds to a regime where all dynamical characteristics of the universe,

measured in physical (proper) units, change little over a single e-folding of expansion. This ensures

that the primordial perturbations are generated with approximately equal power on all scales, leading

to a scale-invariant perturbation spectrum.

Since ε and η characterize the rate of change of H and H,φ with e-foldings, slow-roll is naturally

defined by

ε� 1 , |η| � 1 . (B.18)
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The first slow-roll condition implies

ε� 1 ⇒ H2 =
1

3

(φ′)2

ε
� (φ′)2 , (B.19)

so that the slow-roll limit of the first Friedmann Equation is

H2 ≈ 1

3
a2V . (B.20)

The second slow-roll condition implies

η =
d ln |φ̇|]
dN

=
φ̈

H|φ̇|
� 1 ⇒ |φ̈| � H|φ̇| , (B.21)

so that the Klein-Gordon Equation reduces to

φ̇ ≈ −a
2V ′

3H . (B.22)

In Lecture 1 we defined a second set of common slow-roll parameters in terms of the local shape

of the potential V (φ)

εv ≡ 1

2

(
V,φ
V

)2

(B.23)

ηv ≡ V,φφ
V

. (B.24)

We note that ε(φend) ≡ 1 is an exact definition of the end of inflation, while εv(φend) = 1 is only an

approximation. In the slow-roll regime the following relations hold

ε ≈ εv (B.25)

η ≈ ηv − εv . (B.26)

D.4 Inflationary Attractor Solution

We now show that the slow-roll condition, ε < 1, also implies that inflation is an attractor solution.

Let H̄(φ) be a solution of the Hamilton-Jacobi Equation (B.6) (at this point we don’t demand

that this is an inflationary solution). Now consider a small perturbation δH(φ), i.e.

H(φ) = H̄(φ) + δH(φ) . (B.27)

We linearize Eqn. (B.6) to find

H̄,φ δH,φ ≈
3

2
H̄δH , (B.28)

or
d

dφ
(ln δH) =

3

2

H̄

H̄,φ
. (B.29)

This has the solution

δH(φ) = δH(φi) exp

[
3

2

∫ φ

φi

H̄

H̄,φ
dφ

]
. (B.30)
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Recalling that

dN = −1

2

H

H,φ
dφ =

|dφ|√
2ε

> 0 , (B.31)

this may be written as

δH(φ) = δH(φi) exp [−3(N −Ni)] . (B.32)

During inflation, ε < 1, the number of e-folds of expansion N rapidly becomes large and any

perturbation to the inflationary solution δH gets diluted exponentially. H(φ) then approaches

H̄(φ).
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