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1 Introduction

When is a gas ionized?

• Ionization can come from the plasma itself, if hot enough. With X = Ne/Nneutral,
Saha equation gives,

X2

1−X
=

1

nh2
(2πmekBT )3/2e−I/kBT , (1)

where I is the Ionization energy. Comes from statistical physics inside atom + Maxwell
distribution outside. X → 0 for kBT <� I, and X → 1 for kBT � I.

  

Figure 1: Degree for Ionization for Hydrogen, with, I = 13.6 eV.

• Ionization can come from external medium (Ionosphere ? T = say 1000 K).

• Ionization can come from the proximity of atoms ? Share electrons : metal.

Classification

Say temperature T , density N .
Typical distance between two electrons: N−1/3.
Typical Coulomb energy: e2/N−1/3.
Typical kinetic energy in classical regime: kBT .
More kinetic energy than Coulomb: kBT > e2/N−1/3. Big frontier.
Classical relativistic: kBT > mc2.
Then come quantum effects. When T > Fermi temperature TF , with kBTF = ~2(3π2N)2/3/2me.
Thus, for T < TF , energy increases with density, not temperature.
kBTF < mc2, kB scales like N2/3.
kBTF > mc2, kB scales like N1/3 (White Dwarfs to Neutron Stars?).
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Important quantities

Time it takes to neutralize charge in-balance: Plasma frequency

ω2
p =

4πNe2

me

= 9000
√
N [cm−3]. (2)

That’s why some waves bounce against the ionosphere.
Distance over which charge in-balance can exist: Debye length

λD =
Vth
ωp

=

√
kBT

4πNe
= 7.43 102

√
T [K]/N [cm−3] [cm]. (3)

  

Figure 2: Classification of plasmas.
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2 Kinetic theory

Vlasov and Boltzmann equations

Say only electrons + fixed positive background. Most basic description level. G(r,p, t)d3rd3p
= number of particles in d3rd3p around (r,p) at time t. How does it evolve?

Say a particle has momentum p at position r, at time t. Say a force F acts on it. At time
t+ dt, it will have momentum p + Fdt, and position r + p/γm dt (non-quantum treatment).
Therefore, ALL particles in d3rd3p around (r,p) at time t MUST be in d3rd3p around (r +
p/γm dt,p + Fdt) at time t+ dt. That means,

G

(
r +

p

γm
dt,p + Fdt, t+ dt

)
= G(r,p, t) (1)

The “hyper” volume element d3rd3p does not change (Jacobian = 1 here). Just Taylor expand
the left-hand-side to get the Vlasov Equation,

G(r,p, t) +
∂G

∂r
· p

γm
dt+

∂G

∂p
· Fdt+

∂G

∂t
dt = G(r,p, t),

⇒ ∂G

∂r
· p

γm
+
∂G

∂p
· F +

∂G

∂t
= 0. (2)

Now, this result is NOT always right. Why?
We have assumed the force F does not change over dt. But F is an averaged force, in the
same way the function G is averaged (IGM = 10−6 part/cm−3. If not averaged, d3r must be
gigantic, not infinitesimal). What if something “un-smooth” happened during dt ?

Close collisions are local, quasi-instantaneous processes, sending some particles OUT of
d3p around p, and some other particles INSIDE d3p around p, during dt. (Think about
billiard ball collisions: local and instantaneous). We’ll then have,

G(r,p, t) +
∂G

∂r
· p

γm
dt+

∂G

∂p
· Fdt+

∂G

∂t
dt

= G(r,p, t) + [Collisions(r, t), q→ p,∀q]− [Collisions(r, t), p→ q,∀q], (3)

giving the Boltzmann Equation,

∂G

∂r
· p

γm
+
∂G

∂p
· F +

∂G

∂t
=

∫
q

[Collisions(r, t), q→ p]− [Collisions(r, t), p→ q]. (4)

The right-hand-side, referred to as the “collision term”, is analitically untractable. Yet,
that’s the one driving the relaxation to a Maxwellian distribution GM ∝ e−v

2
. For practical

purposes, alternative forms have been worked-out (Fokker-Planck/Landau, Balescu, Krook
ν(GM −G). . . ).
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Vlasov or Boltzmann ?

In a plasma, particles are influenced by,

• Close collisions, changing p rapidly and appreciably (say θ > π/2). Accounted for by
the collision term in the kinetic equation.

• “Distant” collisions, which amount to the influence of the overall plasma (ρ,J→ E,B).
Accounted for by the Force term in the kinetic equation.

Define a “close” collision by closest approach1 < RL, such as e2/RL = EK where EK is the
typical Kinetic energy (kBT or kBTF ). Frequency for such collisions is roughly ν ∼ nR2

LvK ,
with mv2

K = EK . Time scale for “distant” collisions if ∼ ω−1
p . Vlasov’s equation, with collision

term = 0, is valid for ν � ωp, i.e.,

n

(
e2

EK

)2
√
EK
m
�
√

4πne2

m
⇔ e2n1/3 � EK , (5)

which just defines weakly coupled plasmas, where there is more kinetic energy than Coulomb
potential energy, whether degenerate or not.

The Vlasov-Maxwell system

For weakly coupled plasmas, the first equation needed is therefore Vlasov’s with F = Lorentz,

∂G

∂t
+

p

γm
· ∂G
∂r

+ q
[
E(r, t) +

v

c
×B(r, t)

]
· ∂G
∂p

= 0. (6)

System is closed with Maxwell’s equations, where charge and current densities are given by,

ρ(r, t) =

∫
G(r,p, t)d3p,

J(r, t) =

∫
qG(r,p, t)vd3p. (7)

Eqs. (6,7), together with Maxwell’s, form the Vlasov-Maxwell closed system of equations. In
1D along axis x, we just have for G(x, p, t) and E(x, t),

∂G

∂t
+

p

γm

∂G

∂x
+ qE

∂G

∂p
= 0,

∂E

∂x
= 4πq

∫
G(x, p, t)dp, (8)

with q = −e for electrons. Landau damping comes from these 2, originally with γ = 1.

1Subscript L stands (again) for Landau.
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3 From Kinetic to Fluid to MHD Equations

From Kinetic to Fluid

Fluid equations can be deduced from the moments of the kinetic equation1. The fluid macro-
scopic density n, velocity v and pressure tensor P are defined through,

n(r, t) =

∫
F (r,u, t)d3u, P(r, t) =

∫
m(u− v)⊗ (u− v)F (r,u, t)d3u,

n(r, t)v(r, t) =

∫
uF (r,u, t)d3u, (1)

where ⊗ is “dyadic” product u ⊗ v = (uivj). If our plasma is cold, which kinetically means
F (r,u, t) = δ[u − v(r, t)]G(r, t), the density n(r, t) and the velocity v(r, t) are what we
would expect. Interestingly enough, the pressure tensor vanishes. Microsopic velocity spread
translates to macroscopic pressure. Consider now the non-relativistic Vlasov kinetic equation,

∂F

∂t
+ v · ∂F

∂r
+

E + v ×B/c

m
· ∂F
∂v

= 0. (2)

The moments of the equation give,2∫
[Vlasov] d3p ⇒ ∂n

∂t
+

∂

∂r
· (nv) = 0,∫

mu [Vlasov] d3p ⇒ mn

(
∂v

∂t
+ v · ∂v

∂r

)
= qn

(
E +

v

c
×B

)
− ∂

∂r
·P. (3)

For isotropic pressure3 with P = pI, the last term is just the usual gradient ∂p/∂r = ∇p.
The “convective derivative” term (∂t + v · ∇) simply follows a fluid element.

At this stage, you can close the system introducing a relation between n(r, t) and p(r, t),
that is, an equation of state. Like for the first moment and the pressure, the Vlasov moment∫
un( )d3u always yields a macroscopic quantity ∝

∫
un+1( )d3u from the v · ∂F/∂r term.

Still regarding the micro/macro duality: a non-zero collision term in the Vlasov equation is
needed to recover viscosity or friction on the macro level.

From Fluid to MHD

We have initially one distribution function Fi(r,u, t) per species. The procedure above shows
we eventually have one set of fluid equations per species. Assume we just have protons and

1See the Appendix of Spitzer’s Physics of Fully Ionized Gases for details. Also, Chapter I of William L.
Kruer, The Physics of Laser Plasma Interactions (Previewed on Google Books).

2Not straightforward. See Kruer for details. Note that ∂/∂r is an alternative notation for ∇.
3If the pressure tensor is anisotropic, with P = (pi,j),

∂

∂r
·P =

(
∂pxx
∂x

+
∂pyx
∂y

+
∂pzx
∂z

,
∂pxy
∂x

+
∂pyy
∂y

+
∂pzy
∂z

,
∂pxz
∂x

+
∂pyz
∂y

+
∂pzz
∂z

)
.
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electrons of densities np(r, t) and ne(r, t). If we want to describe fast phenomenon where
electrons could be decoupled from protons (faster than ω−1

p , or smaller than λD), we need to
keep two sets of equations. The so-called Braginskii Equations might be the most elaborate
version of this option.

What if we’re interested in slow τ � ω−1
p , and large scale � λD, effects? Electrons are

expected to closely follow protons. The plasma is a electron/proton “soup”. Electroneutrality
on these scales gives np(r, t) ∼ ne(r, t). In the same way we defined the fluid quantities (1)
and found they obey Eqs. (3), we define the MHD variables,

ρ(r, t) = mpnp(r, t) +mene(r, t), V(r, t) =
meve +mpvp

me +mp

J(r, t) = qnp(r, t)vp(r, t)− qne(r, t)ve(r, t). (4)

Combining the fluid equations for electrons and protons yields4,

∂ρ

∂t
+
∂(ρV)

∂r
= 0, (5)

ρ

(
∂V

∂t
+ V · ∂V

∂r

)
=

J

c
×B−∇(

P︷ ︸︸ ︷
pi + pe) + ρg, (6)

where ρE is neglected with respect to the Lorentz force, as ne ∼ np ⇒ E ∼ 0. Also, a gravity
term ρg is added here. Its fluid counterpart in Eq. (3) would obviously be nmg. The system
is closed through,

∂B

∂t
= −c∇× E, ∇×B =

4π

c
J +

�
�
�1

c

∂E

∂t
. (7)

Inserting J = c∇×B/4π into Eq. (6) gives the usual magnetic pressure and tension terms.
The last equation used to close the system is Ohm’s law, which simplest version reads

J = σ

(
E +

V

c
×B

)
, (8)

where σ is the medium conductivity. This equation is just J = σE in the fluid-frame at
velocity V, transformed in the Lab. frame5. Ideal MHD sets σ =∞, so that E = −V×B/c.
Two concluding remarks:

• Yes, we sometime consider E = 0, like in Eqs. (6) and (7-right), and sometime E 6= 0
like in Ohm’s law or (7-left). Kulsrud6 explains well how this proves reasonable.

• We’ve cheated a little bit. We use the collisionless Vlasov’s equation, and then talk
about EOS or Ohm’s law, which imply collisions. It’s just far simpler to forget about
collisions at the kinetic/micro level, derive the fluid equations, and then get collisions
back into the game, kind of empirically, at the fluid/macro level.

4Eqs. (3) formally give a non-linear term npmp(vp · ∇)vp + neme(ve · ∇)ve 6= ρ(V · ∇)V. An “=” is
obtained neglecting the electron momentum, and considering V ∼ vp.

5J.D. Jackson, Classical Electrodynamics, p. 472.
6R.M. Kulsrud, Plasma Physics for Astrophysics, p. 44.
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4 Linear Landau damping - The Maths

Just a piece of a vast problem: Energy exchange between waves and particles in a plasma.
Simply put, in terms of the energy transfer direction:
• Waves → Particles: Particle acceleration, wave damping.

• Particles → Waves: Wave instability.

The original paper is Ref. [1]. Landau damping is one of the most studied/debated problem
in plasma physics. Nice Maths and Physical derivation1.

Calculation overview

Since the calculation is quite subtle and long, it may be useful to get a general overview from
the very beginning. Here are the steps we will follow:

1. Derivation of the dispersion equation ε(k, ω) = 0 from the 1D Vlasov-Poisson system.

2. Landau contour, the continuity requirement and the Laplace transform.

3. Resolution for small damping and any distribution function.

4. Maxwellian distribution.

Dispersion Equation

Start from 1D non-relativistic equations2 for F (x, v = p/m, t) and field E(x, t),

0 =
∂F

∂t
+ v

∂F

∂x
− eE

m

∂F

∂v
, (1)

∂E

∂x
= 4πe

[
n0 −

∫
F (x, v, t)dv

]
, (2)

where n0 =
∫
F0dv is the equilibrium density. Assume F = F0 + F1, with | F1 |�| F0 |, F0

being an equilibrium solution. Same for E. The equilibrium electric field E0 = 0. Linearizing
Eqs. (1,2), assuming F1, E1 ∝ exp(ikx− iωt), gives

0 = −iωF1 + ikvF1 − e
E1

m

∂F0

∂v
, (3)

ikE1 = −4πe

∫
F1(x, v, t)dv. (4)

1See Kip Thorne’s Caltech course “Applications of Classical Physics”, Chapter 21 mostly for the Maths
part at http://www.pma.caltech.edu/Courses/ph136/yr2004/.

2Easily generalized to 3D.

8



  

Figure 3: Imaginary part of G =
∫
e−u

2
du/u− x, for x ∈ C. The real axis is a discontinuity.

Extract F1 from the first equation, and plug it into the second,

ε(k, ω) = 0, with,

ε(k, ω) = 1−
ω2
p

k2

∫
f ′0

v − ω/k
dv, (5)

where ω2
p = 4πn0e

2/m, f0 = F0/n0 and f ′0 = ∂f0/∂v. This dispersion relation was first
obtained by Vlasov in 1925 [2]. It shows ω should be imaginary. Otherwise, we have a
problem, unless f ′0(ω/k) = 0. The dielectric function ε(k, ω) has therefore a real and an
imaginary part, which for all kind of systems, is related to dissipation.

We could just consider ω imaginary and take this quadrature as it is, integrating along
the real axis. But there’s a problem. The resulting function of ω is discontinuous, precisely
when crossing the real axis. As an illustration, Fig. 3 displays the imaginary part of G =∫
e−u

2
du/u − x, for x ∈ C. The discontinuity is obvious around Im(x) = 0. One part of

the plan has to be physically meaningful, and the other not. But which one? We could
try both options, and check that damping comes only when choosing the upper one. But
what if we didn’t know in the first place that a Maxwellian is stable? We shall see that a
Laplace analysis of the problem can fully answer the question, and will indeed tell us that the
“physical” half-plane is the upper one.

Admitting for now the upper-plane is the physical one, what do we do with the lower
one? The answer is that we have to “analytically continuate” the function we have on the
upper-plane, to the lower one. This means finding a function on the lower plane which makes
a continuous, “analytical” junction, with what we have on the upper one. In this respect,
a uniqueness theorem from complex analysis helps: if somehow we find an expression in the
lower plane matching what we have in the upper one, then this is the only one. The Landau
contour is going to do all of that for us: providing a contour of integration equivalent to an
integration over the real axis for Im(ω) > 0, and an analytical continuation of the later in the
lower plane Im(ω) < 0.
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ω / k
ω / k

v

ω / k

Figure 4: The Landau integration contour. It is not closed. It lies always on the same side of
the pole. It lies below the pole.

Landau contour, the continuity requirement and the Laplace trans-
form

Let’s first give the solution found by Landau, namely the famous “Landau contour”. Figure
4 shows this integration contour has 3 very distinctive features:

1. The Landau contour is not closed by the “usual” semi-circle in the lower or upper
half-plane.

2. The pole ω/k = (ωr + iδ)/k must always lie on the same side of the Landau contour.

3. So, which side? The Landau contour goes below the pole.

These contour prescriptions are called the “Landau prescriptions”, and the corresponding
contour, the “Landau contour”. We thus rewrite from now on Eq. (5) as

ε(k, ω) = 1−
ω2
p

k2

∫
L

f ′0
v − ω/k

dv, (6)

where
∫
L

means integration along the Landau contour. Let’s now find out about these 3
features.

The contour is not closed

The contour just goes from v = −∞ to +∞, and is not closed in the upper or lower half-
plane, as “usual”, because we have no guarantee f ′0(v) behaves correctly there, so as to cancel
the integration on the semi-circle at infinite radius. Indeed, considering a Maxwellian with
f ′0 ∝ e−v

2
and setting v = Rve

iθv to parameterize the integration on a circle of radius Rv, we
find f ′0 ∝ e−R

2
v cos 2θv which can hardly be considered a vanishing quantity at Rv →∞ for any

θv ∈ [0, π] (or [0,−π], if you close in the lower half-plane).

Always on the same side

Assume ω = ωr + iδ, with δ > 0. As long as δ remains positive in Eq. (5), the calculation
does not pose any conceptual problem as the pole is not on the real axis, and continuity is
guaranteed.
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Now, what if δ approaches 0, and the pole ω/k even gets to cross the real axis? We would
like ε(k, ω) to be a continuous function of ω. Assume first we leave the integration contour
unchanged (the real axis for v), and compare the quadrature for ω = ωr + iδ and ω = ωr− iδ.
The influence of the pole is mostly felt where the denominator is minimum at v ∼ ωr/k, so
let’s locally get f ′0 out of the integral and compare,

I1 =

∫
dv

v − (ωr + iδ)/k
and I2 =

∫
dv

v − (ωr − iδ)/k
. (7)

The difference I1 − I2 is,

I1 − I2 = 2i

∫
δ/k

(v − ωr/k)2 + (δ/k)2
dv. (8)

The continuity of ε(k, ω) demands the expression above vanishes when δ → 0+. The problem
is that it does not. Instead, the quadrature tends to π (see function G2 in Appendix A), so
that we indeed have a jump of amplitude 2iπ when crossing the real axis3.

The only way to avoid this is to deform the integration contour in such a way that it
always lies on the same side of the pole ω/k.

The contour goes below the pole

To understand why the contour goes below the pole and not above like in Fig. 6, we need
to follow Landau in rethinking the problem in terms of the time evolution of a perturbation
applied at t = 0. The Fourier technique is not well suited for that because it entails an
integration from t = −∞ to +∞. By design, it does not single out any special moment
in between. By contrast, the Laplace transform involves times only from zero to +∞. As
shall be checked, the Laplace transform technique gives an unambiguous response about the
location of the pole with respect to the integration contour.

Considering a function h(t), its Laplace transform ĥ(ω) and the inversion formula4, read

ĥ(ω) =

∫ ∞
0

eiωth(t)dt, (10)

h(t) =

∫
CL

e−iωtĥ(ω)dω, (11)

where the contour CL pictured on Fig. 5, passes above all the poles of ĥ(ω) at height σ > 0,
and can be closed in the lower half-plane where e−iωt behaves conveniently as to cancel the

3It can also be said that for I1, the integration path makes a counter -clockwise half-turn around the pole,
so that I1 = iπ. But for I2, the half-turn around the pole is clockwise, so that I2 = −iπ and I1 − I2 = 2iπ.

4I here follow Landau’s book, [3], p. 139, in defining the Laplace transform this way. That’s just the usual
one,

g(p) =

∫ ∞
0

g(t)e−ptdt, (9)

for p = −iω. It avoids having to rotate everything in the complex plane to relate the calculation to Eq. (5).
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Re(ω)

Im(ω)

σ  > 0
ω1

ω2
ω3

ω5

ω6

ω4

ωn

Figure 5: Laplace integration contour. Goes from ω = −∞+ iσ to +∞+ iσ with σ > 0, and
is closed in the lower half-plane. By design, σ > 0 and such that every single poles ω1, . . . , ωn
of the integrand lie inside the contour.

integral at infinity there. Note that although the requirement σ > 0 is emphasized in the
book (p. 139), I still have to understand why being above all the poles is not enough. And
as we shall see very soon, σ > 0 is the key to the choice of the right part of the ω complex
plane.

Let’s compute from the Maxwell-Vlasov Eqs. (1,2) the time evolution of the system
considering,

F (x, v, t) = n0f0(v) + F1(v, t)eikx, (12)

E(x, t) = E1(t)eikx, (13)

assuming F1, E1 are first order quantities, and F1(v, t = 0)eikx is the perturbation initially
applied. The linearized Vlasov equation reads,

∂F1(v, t)

∂t
+ ikvF1(v, t)− en0

m
E1(t)f ′0(v) = 0. (14)

If we multiply by eiωt and take the integral from t = 0 to +∞, an integration by part on the
time derivative term gives,∫ ∞

0

eiωt
∂F1(v, t)

∂t
dt =

[
eiωtF1(v, t)

]∞
0
− iω

∫ ∞
0

eiωtF1(v, t)dt

= −F1(v, 0)− iωF̂1(v, ω), (15)

where limt→∞ e
iωtF1(v, t) = 0 has been assumed. On the one hand, the very existence of the

Laplace transform of F1(v, ω) =
∫
F1(v, t)eiωtdt implies it. On the other hand, a important

conclusion of the paper is that for large times, F1(v, t) ∝ eikvt (see [1] p. 452, and Plasma
Talk 5 ). This point is discussed neither in the book, nor in the original paper. Using Eqs.
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ω / k ω / k

v

ω / k

Figure 6: Forbidden option for the contour. Continuity is preserved, but the contour lies
above the pole, in contradiction with the Laplace prescription.

(15,14) then gives,

(ikv − iω)F̂1(v, ω)− en0

m
Ê1(ω)f ′0(v) = F1(v, 0), (16)

where F1(v, 0) now acts like a “source term” at the right-hand-side. A few more manipulations
exploiting Poisson’s equation (2) give,

Ê1(ω) =
1

ε(k, ω)

4πe

k2

∫ ∞
−∞

F1(v, 0)dv

v − ω/k
, (17)

where ε(k, ω) is identical to Eq. (5). The time dependant electric field given by the inversion
formula (11) is,

E1(t) =

∫
CL

e−iωtÊ1(ω)dω =

∫
CL

e−iωt

ε(k, ω)

[
4πe

k2

∫ ∞
−∞

F1(v, 0)dv

v − ω/k

]
dω. (18)

In contradistinction with Eq. (5) where the contour issue is puzzling, the Laplace tech-
nique used here is clear: The v-integration in ε(k, ω) does go along the real axis, and the
ω-integration is performed at fixed Im(ω) = σ > 0. It means that in Eq. (18), which com-
putes a physical quantity, the dielectric function ε(k, ω) is calculated with ω above the real
v-axis.

That answers the question we had: the physically meaningful half-plane we were wondering
about after Eq. (5) is the upper one. The kind of contour pictured on Fig. 6 is thus
“forbidden”.

Incidentally, what are the poles of the integrand in Eq. (18)? For “normal”, smooth initial
excitations F1(v, 0), the term between brackets won’t have poles, so that our poles ω1, . . . , ωn
are eventually the zeros of ε(k, ω). The ω-integration of Eq. (18) on the closed contour CL
will thus give, with ωj = ωr,j + iδi,

E1(t) = 2iπ
n∑
j=1

Res(j) ≡
n∑
j=1

Aj exp(−iωjt) =
n∑
j=1

Aj exp(−iωr,jt)eδjt, (19)

which for large times will be governed by the largest δj. Therefore, the Laplace transform
approach cannot spare us the resolution of ε(k, ω) = 0, as these zeros are the building blocks
of the temporal response of the system.
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Resolution for small damping

We suppose small damping, that is |δ| � |ωr|, and Taylor expand Eq. (6),

ε(k, ωr + iδ) = εr(k, ωr) + iδ
∂εr
∂ωr

∣∣∣∣
δ=0

+ i

[
εi(k, ωr) + iδ

∂εi
∂ωr

∣∣∣∣
δ=0

]
= εr(k, ωr) + iεi(k, ωr) + δ

[
i
∂εr
∂ωr
− ∂εi
∂ωr

]
δ=0

= ε(k, ωr) + iδ
∂εr
∂ωr

∣∣∣∣
δ=0

+ o(δ), (20)

where the o(δ) (negligible with respect to δ), comes from the fact that εi(δ = 0) = 0 (no
damping, no dissipation, no imaginary dielectric function).

The first term ε(k, ωr) is given by Eq. (6) setting ω = ωr, or taking the limit of ε(k, ωr+iδ)
for δ → 0+. The part of the integration along the real axis for v ∈ [−∞, ωr/k − ε] ∪ [ωr/k +
ε,+∞] gives the so-called “Cauchy Principal Part”, denoted P here. The part corresponding
to the semi-circle (see Fig. 4 middle) gives the semi-residue for v = ωr/k. An alternative way
of deriving this result, considering the limit δ → 0+, is reported in Appendix A. We thus get,

ε(k, ωr) = 1−
ω2
p

k2

[
P

∫
f ′0

v − ωr/k
dv + iπf ′0(ωr/k)

]
. (21)

This result allows to compute ∂εr/∂ωr in Eq. (20), which eventually gives,

ε(k, ω) = 1−
ω2
p

k2
P

∫
f ′0

v − ωr/k
dv − i

ω2
p

k2

[
πf ′0(ωr/k) + δ

∂

∂ωr
P

∫
f ′0

v − ωr/k
dv

]
. (22)

Equating the real part to zero yields,

ω2
p

k2
P

∫
f ′0

v − ωr/k
dv = 1, (23)

which was the result obtained by Vlasov in the first place. Canceling the imaginary part gives
directly the damping rate,

δ = −π f ′0(ωr/k)
∂
∂ωr

P
∫ f ′0

v−ωr/kdv
. (24)

Eqs. (23, 24) formally solve the problem in terms of the distribution function. A first order
evaluation of P∼ k2/ω2

r (see Eq. (27) below), gives

ωr = ωp, and then (25)

δ

ωp
=

π

2

ω2
p

k2
f ′0(ωp/k).

The rate δ has the sign of f ′0(ωp/k). That means that if f0 decreases for v = ωp/k, the
waves is damped because δ < 0. But if f0 increases for v = ωp/k, we have δ > 0 and the wave
can actually grow.
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One could argue we started initially assuming δ positive, and find it can be negative here.
It is not a problem for the following reason: Eq. (22) we found assuming δ > 0 is continuous
at δ = 0. It must therefore be identical to the integration on the Landau contour on both
sides of the real axis. We can therefore confidently solve it regardless of the sign of δ. In
other words, thanks to the Landau contour, we can compute the result as if δ was positive,
and then don’t care about the sign.

Historically, Vlasov first ran into Eq. (5). He escaped the problem posed by the pole on
the real axis by considering only the P of the quadrature. He did so apparently without much
foundation, which Landau denounced without mercy in [1]. We understand from the analysis
above that doing so, he missed the imaginary part which would have led to the “Vlasov
damping”.

Maxwellian distribution

Let’s finally consider a 1D Maxwellian distribution,

f0(v) =
1√

2πkBT/m
e−mv

2/2kBT . (26)

For phase velocities ωr/k much larger than the thermal velocity Vth =
√
kBT/m, we can

expand the denominator in powers of kv/ωr, since that quantity is small where the numerator
is relevant. We thus have,

P

∫
f ′0

v − ωr/k
dv = − k

ωr

∫
f ′0

(
1 +

kv

ωr
+
k2v2

ω2
r

+
k3v3

ω3
r

+ · · ·
)
dv

=
k2

ω2
r

+ 3
kBT

m

k4

ω4
r

+ · · · (27)

For small k, namely kVth/ωr ∼ kVth/ωp � 1, Eq. (23) now gives,

ω2
r = ω2

p(1 + 3k2λ2
D), with λD =

√
kBT/m

ωp
. (28)

We finally (phew!) use Eq. (24) to extract the damping rate. On the one hand, we compute
the derivative of the P with respect to ωr using Eq. (27), and then simply set ωr = ωp in the
result. On the other hand, we set ωr = ωp in f ′0 to find5

δ = −ωp
√
π/8

k3λ3
D

exp

(
− 1

2k2λ2
D

)
. (29)

Fluid theory just gives the real part of the frequency, namely Eq. (28), so that Landau
damping is a purely kinetic effect.

5Some authors insert the full expression of ωr from Eq. (28), yielding −1/2k2λ2D − 3/2 in the argument of
the exponential.
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Figure 7: Functions G1 and G1 involved in Eq. (32). For small δ/k, G1 is almost 1 everywhere,
except for v = ωr/k, where it is 0. G2 peaks at v = ωr/k and tends to 0 elsewhere, while its
integral is always π, like a Dirac δ function. Parameters are ωr/k = 4, δ/k = 0.2 for G1, and
δ/k = 0.2, 0.5, 1 for G2.

Appendix A

Let’s derive, ∫
L

f ′0
v − ωr/k

dv = P

∫
f ′0

v − ωr/k
dv + iπf ′0(ωr/k), (30)

used for Eq. (21), without using the residue theorem. For ω = ωr + iδ with δ > 0, integration
along the Landau contour is equivalent to an integration along the real axis. Let’s thus assume
δ > 0 and compute,

I = lim
δ→0+

∫ ∞
−∞

f ′0
v − (ωr + iδ)/k

dv. (31)

We multiply the numerator and the denominator of the integrand by (v − ωr/k) + iδ/k,
which is the complex conjugate of the denominator. We get an expression with a purely real,
non singular denominator, and clearly separated real and imaginary parts,

I = lim
δ→0+

∫ ∞
−∞

(v − ωr/k)2

(v − ωr/k)2 + (δ/k)2︸ ︷︷ ︸
G1

f ′0
(v − ωr/k)

dv + i

∫ ∞
−∞

δ/k

(v − ωr/k)2 + (δ/k)2︸ ︷︷ ︸
G2

f ′0dv. (32)

Regarding the real part, the factor G1 of the integrand is 0 for v = ωr/k, and ∼ 1 for
δ/k � |v− ωr/k|. It tends to the P

∫
f ′0/(v− ωr/k) for small δ/k (see Fig. 7). The factor G2

of the integrand of the imaginary part departs from 0 only for v ∼ ωr/k. But its integral is
always π. For small δ/k, the quadrature thus tends to πf ′0(ωr/k), and we are back to (30)6.

6 The limit of iδ with δ → 0+ is sometimes written “i0”. The identity

lim
δ→0+

∫ ∞
−∞

h(x)

x− a− iδ
dx ≡

∫ ∞
−∞

h(x)

x− a− i0
dx = P

∫ ∞
−∞

h(x)

x− a
dx+ iπh(a),
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This calculation is consistent with the Landau contour integration only for δ → 0+. This
is because in such case, the real axis along which we perform the integration (32) coincide
with the Laundau contour. If we were to compute Eq. (32) for δ → 0−, we would find the
opposite imaginary part, just because in this case, the real axis no longer fits the Landau
contour. The latter, instead, is deformed and keeps passing below the pole, precisely to avoid
the discontinuity.
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5 Landau damping - The Physics, Plasma Echo, and a

(little) word about the non-linear problem

While the original paper [1] is purely mathematical, a clearer physical picture is provided
in Landau’s book ([2], §30 p. 126). Suppose we switch on at t = 0 a 1D electrostatic wave
E = E0 sin(kx − ωt)x, traveling at vφ = ω/k along with a particle with velocity v0 at t = 0.
For v0 slightly larger than vφ, the particle is trapped in the wave potential, where it is going
to oscillate. Doing so, it ends up with an average velocity close to the wave velocity vφ. It
should thus loose energy, and the energy goes to the wave. Situation is reversed for particles
initially slightly slower than the wave. They end up gaining energy from the wave.

If slower particles are more numerous than the faster ones, the wave looses more than
it gains, which means it is damped. Let’s now “Fermi-calculate” this, not following Fermi
but Jackson [3] and Spitzer [4] (who follows Jackson). Landau uses a slightly different ap-
proach, still implying a calculation with some small parameter eventually tending to zero.
I chose Jackson1 precisely because there’s no such trick in his strategy. The reasoning is
non-relativistic.

To start with, which particles can enter the game? If their velocity is too high relatively
to the wave, they will flow from one potential crest to another, without much net energy
exchange. The ones for which energy exchange is possible, are the ones which will be trapped
by the potential. The wave potential height is,

∆ϕ =
qE0

k
. (1)

The maximum particle velocity ∆v in the wave-frame at vφ must then satisfy,

1

2
m(∆v)2 = ∆ϕ ⇒ (∆v)2 =

2qE0

mk
. (2)

Thus, only particles with velocity v ∈ [vφ −∆v, vφ + ∆v] in the lab-frame can be caught
by the wave. This is pictured on Fig. 8, taken from another great work on Landau damping
by Dawson [5]. For a particle near the center of this interval, we take sinx ∼ x for the field,
and the equation of motion in the wave-frame reads

m
d2x

dt2
+ qE0kx = 0 ⇒ d2x

dt2
+ ω2

osc x = 0, where ω2
osc =

qE0k

m
, (3)

showing it oscillates in the wave potential with frequency ωosc.
Before it was trapped, the particle energy in the lab-frame was just W1 = mv2/2. After

the trapping, the energy is

W2 =
1

2
m
(
v2
φ + (v − vφ)2

)
, (4)

where 1
2
mv2

φ is the end translational kinetic energy, and 1
2
m(v − vφ)2 can be viewed as an

internal energy of oscillation2. If there are n0f0(v)dv particles with such velocities, with

1The J.D. Jackson who wrote Classical Electrodynamics.
2The energy of a mass oscillating is a potential is split between its kinetic energy and its potential energy.

At the bottom of the potential well, all the energy is kinetic. The term ∝ (v − vφ)2 in Eq. (4) is the kinetic
energy, in the wave frame, of the particle at the bottom of the well.
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Figure 8: Division of the plasma between non-resonant and resonant (trapped) particles. Only
resonant particles contribute to the calculation. After [5].

∫
f0 = 1, the energy shift is

dW = n0f0(v)dv(W2 −W1), (5)

which we integrate over all particles capable of such exchange,

∆W =

∫ vφ+∆v

vφ−∆v

n0f0(v)dv
1

2
m
(
v2
φ + (v − vφ)2 − v2

)
. (6)

Expanding f0(v) = f0(vφ) + (v− vφ)f ′0(vφ) + · · · , the term corresponding to f0(vφ) in Eq. (6)
vanishes3, and we find

∆W = −2

3
mn0vφ∆v3f ′0(vφ). (7)

If, like on Fig. 8, particles slower than vφ are more numerous than faster ones, f ′0(vφ) < 0
and ∆W > 0, which means particles gain energy at the expense of the wave. The wave is
damped. We now just have to write that this energy leaves the field E over a time scale ω−1

osc,

d(E2
0/8π)

dt
= −ωosc∆W = ωosc

2

3
mn0vφ∆v3f ′0(vφ). (8)

Plugging here the expressions for ∆v and ωosc from Eqs. (2,3) we find,

d(E2
0/8π)

dt
=

8
√

2

3
ω
ω2
p

k2
f ′0(vφ)

(
E2

0

8π

)
,

≡ 2δ

(
E2

0

8π

)
. (9)

3It does not vanish if you omit the “internal energy” term in Eq. (4).
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As the field energy ∝ E2
0 is damped at 2δ, the field itself is damped at δ. Setting finally

ω = ωp, we have

δ

ωp
=

4
√

2

3

ω2
p

k2
f ′0(ωp/k), (10)

identical to Eq. (25) of Plasma Talk 4, up to a numerical pre-factor close to 1 (π/2 = 1.57
and 4

√
2/3 = 1.88). A discussion of the non-Galilean invariance of Eq. (10) is available in

[3] (p. 180).

A word on Landau damping and gravitation

According to Ref. [6], Landau Damping of Gravitational Waves would not be possible. Much
has been done with respect of Landau Damping of more mundane “gravity waves”. The
stability and vibrations of a gas of stars, by Lynden-Bell, seems to be a quite influential paper
[7]. The abstract concludes stating “Landau Damping occurs for wave-length smaller than
the critical one [Jean’s]”.

Plasma Echo

Fascinating consequence of the fact that the density relaxes whereas the distribution function
does not (many functions have the same integral). Original idea by Gould et al. [16].

Suppose we produce an initial electric field perturbation ∝ e−ik1x in the plasma. The
Laplace analysis [1] of the distribution function temporal evolution (not the field, nor the
density) shows it indefinitely oscillates with F = f0 +f1(v) exp(ik1vt− ik1x). For large times,
any velocity integral “phase”-vanishes,

lim
t→∞

∫
f1(v)eik1vt−ik1xdv = 0, (11)

which is how we recover zero field and density perturbations. The density perturbation and
the field associated with f1 die out, but f1 doesn’t. This is how you reconcile the necessary
reversibility of the Vlasov-Maxwell system, with the apparent irreversibility of Landau Damp-
ing. There only seems to be a macroscopic irreversibility, but the evolution in microscopically
reversible.

Is it possible to detect this ever oscillating f1(v) at later times ? Yes. Assume we wait for
a time τ , and send another perturbation in the plasma ∝ eik2x. The second perturbation is
going to modulate both f0 and f1 according to eik2v(t−τ)−ik2x. Regarding f1, we will recover
something varying like

eik1vt−ik1xeik2x−ik2v(t−τ) = ei(k2−k1)x+ik2vτ−i(k2−k1)vt. (12)

The key-point here is that contrary to Eq. (11), where k1t 6= 0 implies the velocity integral
vanishes at large times, together with the first order density and field, the coefficient of v in
the exponential above is exactly canceled at time,

t =
k2

k2 − k1

τ. (13)
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At this time, the velocity integral will not vanish, and an electric field should reappear in the
plasma. So you perturb a plasma. You wait until everything apparently calmed down. Then
you send another perturbation, and at the time prescribed by Eq. (13), an electric field will
suddenly pop-up “out of nowhere”, related to the perturbation you first sent. That is the
“plasma echo”.

The idea was experimentally tested soon after the theory came, and the echo was found
[17]. Mouhot & Villani put it this ways: “A plasma which is apparently back to equilibrium
after an initial disturbance, will react to a second disturbance in a way that shows that it has
not forgotten the first one” ([14], p. 40).

Regarding gravitational systems, Lynden-Bell wrote “A system whose density has achieved
a steady state will have information about its birth still stored in the peculiar velocities of its
stars” ([7], p. 295).

Nonlinear Landau damping

We found linear waves are damped. Landau Damping has been experimentally confirmed [8].
Here are a few landmarks for large amplitude waves (1D, non-relativistic)4:

• Isichenko 1997 [9]: Landau damping valid ∀ amplitude (Theory).

• Manfredi 1997 [10]: Some large amplitude waves do not decay until t =∞ (Numerical).

• Lancellotti & Dorning 1998 [11]: Existence of “critical initial states” for which limt→∞E 6=
0 (Theory).

• Caglioti & Maffei 1998 [12]: Mathematical proof of the existence of some damped
solutions (Theory).

• Medvedev et al. 1998 [13]: Damping of waves of finite amplitude and arbitrary shape
according to eδt, with limt→∞ δ = 0 (Theory).

Mouhot & Villani 2010 [14, 15]: End of the controversy. Nonlinear Landau damping for
general interactions, including Coulomb and Newton (therefore also including the case of
galactic dynamics).

For any potential V (r) such that |V (k)| = O (|k|−2−ε), with ε > 0, and any linearly
stable distribution function f0(x, v), large amplitude perturbations relax in such a way that
all observables (density, field. . . ),

Ψ(t) =

∫
f(t, x, v)ψ(x, v)dxdv, (14)

relax exponentially with time. The distribution function itself does not relax to its value at
t = 0. For small perturbations, f(t, x, v) converges to something that is close to f0(x, v). For
larger perturbations, the distribution function converges to something that is far from f0, or

4Thanks to Giovanni Manfredi for the summary!
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it does not converge at all. The large time behavior of a strongly disturbed solution is still
an open mystery.

See [14] for the full report, and a great history of the problem, or [15] for a shorter version.
Villani was awarded the 2010 Fields Medal for this.
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6 Beam Plasma Instabilities - Introduction

Miscellaneous

From now on, and for a number of Lectures, I’ll just go through the Review Paper, “Multidi-
mensional electron beam-plasma instabilities in the relativistic regime”, Physics of Plasmas,
17, 120501 (2010).

Counter-streaming flows, possibly relativistic. Lots of them. Basic system: counter-
streaming electron beams with nb0, np0,vb0,vp0 over a background of fixed protons ni. Main
hypothesis:

• Collisionless, Vlasov-Maxwell plasmas (i.e. weakly coupled, see Plasma Talk 2 ),

• Homogenous, no boundaries (system size � c/ωp),

• Initially current and charge neutral, nb0vb0 = np0vp0 and nb0 + np0 = ni,

• No B0, to start with. . .

Motivations : simplest system + Fast Ignition Scenario for Inertial Fusion + Shock Accel-
eration physics (SNR’s, GRB’s). See Fig. 2 of Review Paper.

Particle-In-Cell Simulations: great tool for testing/guiding - See Fig. 3 of Review Paper.

A multidimensional unstable spectrum

• 1948: some perturbations with k ‖ to the flow are unstable - Two-stream modes.

• 1959: some perturbations with k ⊥ to the flow are unstable - Filamentation modes.
Still 1959: collisionless plasma with Tx > Ty, unstable for k ‖ y. Weibel.
Difference between them discussed in Sec. III. F of Review.

• 1960: some perturbations with k arbitrarily oriented are unstable - Oblique modes.

Bottom line here: Which one will Nature choose? The fastest. Need to tackle the problem
globally.

First: look at flow aligned, then flow-perp and the oblique modes. Second: which one
grows faster?
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7 Two-stream Instability

Two-stream (flow-aligned) modes

Interesting starting with a cold fluid 1D model. Equivalent to Vlasov with f0(v) ∝ δ(v− v0).
Non-relativistic. General case shows it’s still relevant for the 3D case.
Linearize conservation and Euler equations. One set for each electron species, and I omit
subscripts for clarity. Consider first orders quantities n1p, n1b, E1 ∝ eikx−iωt. Conservation
and Euler equations read,

∂n

∂t
+
∂(nv)

∂x
= 0, (1)

m
∂v

∂t
+mv

∂v

∂x
= qE. (2)

Once linearized, they respectively give

n1 = n0
kv1

ω − kv0

, (3)

v1 = i
qE1/m

ω − kv0

, (4)

so that,

n1 =
qn0

m

ikE1

(ω − kv0)2
. (5)

Then, from Poisson’s equation1

ikE1 = 4πq(n1b + n1p), (6)

we get,

1 =
ω2
pb

(ω − kv0b)2
+

ω2
pp

(ω − kv0p)2
, with ω2

p,bp =
4πq2n0,bp

m
. (7)

The frequency ω − kv is the Doppler shifted frequency. Can’t help but thinking it looks
like an energy conservation equation. Without drifts, v0,bp = 0 and we just have

(~ω)2 = (~ωpb)2 + (~ωpp)2. (8)

Any ideas?
Until Eq. (5), species are disconnected from each other in the calculation. It is Poisson’s

equation which puts them together, summing the contribution of each species. Assume an
infinite amount of these, each beamlet going at velocity v, with density n0f0(v)dv,

∫
f0 = 1.

The extension of Eq. (7) reads,

1 =

∫
4πq2n0f0(v)dv

m(ω − kv)2
=
ω2
p0

k2

∫
f0(v)dv

(v − ω/k)2
, ω2

p0 =
4πq2n0

m
. (9)

1Poisson’s equation brings a vectorial equation down to a scalar one. We thus loose information, unless
k ·E = kE. The full 3D analysis shows modes with k⊥ = 0 are precisely like this.
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identical with the one encountered in Plasma Talk 4, up to an integration by part.
So if we “Fermi understand” Eq. (7), we have everything.
Introducing the dimensionless variables,

x =
ω

ωpp
, Z =

kv0b

ωpp
, α =

n0b

n0p

, (10)

Eq. (7) reads,

1 =
α

(x− Z)2
+

1

(x+ αZ)2
. (11)

Diluted beam, α� 1

There are techniques2 to solve Eq. (11) in this regime, always approximately, for all Z. I just
show here how to find the mode growing the most.

The beam is just a perturbation to the plasma. The modes of the system should be close
to the modes of the plasma alone. We thus look for solutions at ω ∼ ωpp, i.e. x = 1 + ε. We
also know that the fastest growing mode should efficiently exchange energy with the beam.
It should thus have have ω/k ∼ v0b. With ω ∼ ωp, that means Z ∼ 1. Eq (11) now reads,

1 =
α

(1 + ε− Z)2
+

1

(1 + ε+ αZ)2
. (12)

As we’ll checked, | 1− Z |� ε and αZ ∼ α� ε, which gives

1 =
α

ε2
+

1

(1 + ε)2
⇒ 1 =

α

ε2
+ 1− 2ε ⇒ ε3 =

α

2
. (13)

By setting ε = ρeiθ, we find

ρ =
(α

2

)1/3

, θ = −2π

3
, 0,

2π

3
. (14)

With e±i2π/3 = −1/2± i
√

3/2, we obtain 3 modes

x =
ω

ωpp
= 1− α1/3

24/3
− i
√

3

24/3
α1/3, (15)

= 1− α1/3

24/3
, (16)

= 1− α1/3

24/3
+ i

√
3

24/3
α1/3, Unstable. (17)

As evidenced on Fig. 9, the most unstable mode has Z ∼ 1, that is k/ωpp ∼ v0b. An electron
from the beam always sees the same electric field.

How to compute these results in a Fermi-like way?

2See S. A. Bludman, K. M. Watson, and M. N. Rosenbluth, Phys. Fluids 3, 747 (1960).
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Figure 9: Left: Plot of Im(x) in terms of Z for α = 10−3, 10−2, 10−1 and 1. Right: Plot of
Eq. (19), x2 = 1 + Z2 −

√
1 + 4Z2. The system is unstable, x2 < 0, for Z <

√
2.

Symmetric beams, α = 1

Eq. (11) now reads,

1 =
1

(x− Z)2
+

1

(x+ Z)2
, (18)

which can be solved exactly for all Z, giving

x2 = 1 + Z2 ±
√

1 + 4Z2. (19)

For Z <
√

2, the solution with a minus sign is unstable (see Fig. 9), with a most unstable
wave-vector Zm and its frequency xm given by

Zm =

√
3

2
, xm = 0 + i

1

2
. (20)

For the diluted beam regime, unstable modes are plasma Langmuir waves at ω ∼ ωp,
traveling with the beam. Things are not so clear here. The beam is no longer a perturba-
tion. The waves have Re(ω) = 0, and are the modes of the full counter-streaming system
“beam+plasma”, each of equal density.

To wrap-up the most unstable mode characteristics in terms of α ∈ [0, 1]:

• Growth-rate: Im(ω/ωpp) =
√

3
24/3

α1/3 −→ 1
2

(Note that
√

3
24/3
∼ 0.68 > 1

2
).

• Frequency: Re(ω/ωpp) = 1−
√

3
24/3

α1/3 −→ 0.

• Most unstable wave-vector: Z = 1 −→
√

3
2

.

Relativistic effects

Maxwell’s and conservation equations are the same. Euler is now (subscripts omitted),

m
∂(γv)

∂t
+mv

∂(γv)

∂x
= qE. (21)
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It turns out that when linearizing “γv” instead of “v”, one finds,

γv = γ0v0 + v1γ
3
0 + · · · (22)

As a result, Eq. (11) is replaced by,

1 =
α

(x− Z)2γ3
b

+
1

(x+ αZ)2γ3
p

. (23)

Intuitively, where does these 1/γ3 come from ? If a particle oscillates along its main
direction of motion, its mass gets a γ3 relativistic boost. Changing m to mγ3 is Eq. (7) gives
the result above.

Diluted beam, α� 1

Here, γp ∼ 1, so that we can recycle the non-relativistic results for diluted beam, formally
replacing α→ α/γ3

b , i.e. nb → nb/γ
3
b . The unstable modes given by Eq. (17) now reads,

x =
ω

ωpp
= 1− 1

24/3

α1/3

γb
+ i

√
3

24/3

α1/3

γb
. (24)

Symmetric beams, α = 1

With two symmetric beams, the Lorentz factors are the same γp = γb ≡ γ. Equation (23)
now reads,

1 =
1

(x− Z)2γ3
+

1

(x+ Z)2γ3
. (25)

Here again, we just replace x → xγ3/2 and Z → Zγ3/2, and we’re formally back to the
non-relativistic case. Equation (20) then gives

Zm =

√
3

2γ3/2
, xm = 0 + i

1

2γ3/2
. (26)
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8 Filamentation Instability - Part 1

We still consider the same counter-streaming system, but look now at perturbations with
k ⊥ to the flow. With respect to the Two-stream instability (k ‖ to the flow), the situation is
reversed: The physics is simple, but the full maths are involved. Let’s start with the physics.

Physical picture

Suppose two particle currents of same radius a and density n but opposite velocities u, per-
fectly overlap (Fig. 10, left). The system is charge and current neutral, in equilibrium. We
now set them apart by a distance R (Fig. 10, right). The first current generates a B field at
the level on the second one. The field is such that the Lorentz force F produced repels the
other current even more. Unstable system. We can write,

F = dM
d2R

dt2
, (1)

where dM is the mass of the volume element. The force reads,

F = dq
u

c
B, (2)

where dq is the charge of the volume element. With a density n, and particles of charge q
and rest mass m, the charge dq and the mass dM of the volume dV read respectively,

dq = qndV, and dM = γmndV, (3)

where γm is the relativistic mass boost for transverse motion. Equation (1) now reads,

qndV
u

c
B = γmndV

d2R

dt2
, i.e, q

u

c
B = γm

d2R

dt2
. (4)

B is the field created by the current, so that

B =
2I

cR
, where I = nquπa2. (5)

Replacing the current I by its expression, we find

d2ξ

dt2
=
δ2

ξ
, with δ = ωp

β√
2γ
, and ξ =

R

a
, β =

u

c
, (6)

with ω2
p = 4πnq2/m. Although this equation won’t give ξ ∝ eδt, it does tell the system

does not relax to its initial state, on a time scale ∝ δ−1, which fits exactly the result of the
linear theory1. Maybe an exponential grow would be obtained starting from opposite current
partially overlapping.

1Up to a factor of order unity, as usual.

28



  

U

U a

R

U, γ

I

I

dV

U, γ

Figure 10: System unstable to the filamentation instability.

The Maths

The Dispersion Equation: Calculation Pattern

The dispersion equation for the filamentation instability is not easier to derive than the one
for arbitrarily oriented k’s. I will thus go over the general case k‖k⊥ 6= 0, and then focus on
k‖ = 0. For the Two-stream instability, the flow of the calculation was2:

Euler + Conservation eqs. (or Vlasov) for each species
↓

First order densities n1’s in terms of E1

↓
Merge info for all species through Poisson’s equation

↓
Dispersion Equation

We could use Poisson’s equation for modes with k ‖ to the flow because we know3 they
have k ‖ E. In plasma jargon, we say these modes are longitudinal, or electrostatic. For the,
Poisson equation, which convert a vectorial into a scalar identity, doesn’t result in a loss of
information, precisely because k ‖ E.

For filamentation modes, we don’t know about the respective orientation of k and E.
The divergence of the electric field would introduce the cosine of the k̂,E angle, which is
unknown. Poisson’s ∇ · E = 4πρ gives kxEx + kyEy + kzEz = 4πρ, which cannot be used as
a dispersion equation because it yields only one equation for three components of the field.
We need a 3D “merging species” equation which does not result in information loss. This is
Maxwell-Ampère, which merges the currents instead of the charges.

The general pattern of the calculation is indeed quite similar:

2See Plasma Talks 7.
3We’ll soon find out it is true.
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Euler + Conservation eqs. (or Vlasov) for each species
↓

First order currents J1’s in terms of E1

↓
Merge info for all species through Maxwell-Ampère equations

↓
Dispersion Equation

Let’s see this more in details, reasoning again from the fluid equations. Every equilib-
rium quantities are now slightly perturbed with terms ∝ exp(ik · r − iωt). The linearized
conservation equations give for each species:

n1 = n0
k · v1

ω − k · v0

. (7)

The linearized non-relativistic (so far) Euler equation give, still for each species:

v1 =
−iq/m
ω − k · v0

(
E1 +

v0 ×B1

c

)
. (8)

It is easy to eliminate B1 through Maxwell-Faraday equation,

B1 =
c

ω
k× E1, (9)

so that we see how Eqs. (7,8) eventually give n1 and v1 in terms of E1 alone, for each species,

v1 =
−iq/m
ω − k · v0

(
E1 +

v0 × (k× E1)

ω

)
,

n1 =
−iqn0

m

k

(ω − k · v0)2
·
(

E1 +
v0 × (k× E1)

ω

)
. (10)

We may now write Maxwell-Ampère equation, to merge the information from all the
species into one single equation depending of E1 only,

ik×B1 =
−iω
c

E1 +
4π

c
J1, (11)

and eliminate B1 from Maxwell-Faraday Eq. (9) to obtain,

c2

ω2
k× (k× E1) + E1 +

4iπ

ω
J1 = 0. (12)

The first order current is finally expressed through,

J1 = n0,bv1,b + n1,bv0,b︸ ︷︷ ︸
Beam part

+n0,pv1,p + n1,pv0,p︸ ︷︷ ︸
Plasma part

. (13)
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Although the end result is not really “user friendly”, we can see how Eqs. (10,12,13) eventually
yield a tensorial equation of the form

T · E1 = 0. (14)

When starting from the Vlasov equation, linearization gives the first order distribution
function for each species,

f1(k,v, ω) =
iq/m

ω − k · v

(
E1 +

v ×B1

c

)
· ∂f0

∂v
. (15)

Here again, Maxwell-Faraday Eq. (9) together with n1 =
∫
f1dv and v1 =

∫
f1vdv, allow to

reach the dispersion equation.
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9 Filamentation Instability - Part 2

Dispersion Equation Analysis

The tensorial equation T · E1 at the end of Plasma Talk 8 has the obvious solution E1 = 0.
Now, the proper modes of our system are precisely the non-trivial solutions T ·E1 = 0, with
E1 6= 01.

That tells us two things:

• If (∃ E1 6= 0 / T · E1 = 0) ⇒ det T = 0. That’s the dispersion equation, yielding ω in
terms of k.
Assume we pick up one wave vector k. The dispersion equation

det T(k, ω) = 0, (1)

gives one or more ω’s, (ω1,k, . . . , ωN,k) ∈ CN . Each couple (k, ωj,k) defines a proper
mode of the system. Unstable modes have Im(ω) < 0.
The fluid model usually gives a polynomial dispersion equation. Each new ingredient
to the model (mobile ions, magnetic field,. . . ), adds waves. Polynomial of degree larger
than 10 are common.

• The proper modes of the system E1(k, ω) are in the Kernel of T, which is precisely the
set of non-zero E1’s fulfilling T · E1 = 0.
Assume again we picked up one wave vector k. The dispersion equation gives a series
of frequencies (ω1,k, . . . , ωN,k). We thus have N tensors with vanishing determinants.
Each of these N tensors has a Kernel of dimension 1 or 2 (a Kernel of dimension 3 would
imply T=0).

T(k, ω1,k) ⇒ {E1,i (k, ω1,k)}i=1 or 2 ,

...

T(k, ωN,k) ⇒ {E1,i(k, ωN,k)}i=1 or 2 ,

So, for one couple (k, ωk), the formalism tells how is the E1 field. It lies either along a

given direction, or in a plane. In particular, the formalism tells us about the k̂,E angle.
We don’t have to assume waves are longitudinal2 (k ‖ E), or transverse (k ⊥ E). The
formalism decides for us.

For a flow ‖ z, and k = (kx, 0, kz) as pictured on Fig. 11, the final form of the tensor T is
given by,

T =

∣∣∣∣∣∣
η2εxx − k2

z 0 η2εxz + kzkx
0 η2εyy − k2 0

η2εxz + kxkz 0 η2εzz − k2
x

∣∣∣∣∣∣ , (2)

where η = ω/c and εαβ is given by Eq. (8) of the Review Paper.

1We could also say we look for the eigen-vectors associated with the eigen-value λ = 0.
2Also referred to as “electrostatic”.
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Figure 11: Axis conventions.

Two-stream Check

Let’s check our assumption from Plasma Talk 7, that for k ‖ flow, i.e. kx = 0, there are
longitudinal modes with k ‖ E. Setting kx = 0 in Eq. (2) gives,

T(kz, kx = 0) =

∣∣∣∣∣∣
η2εxx − k2 0 η2εxz

0 η2εyy − k2 0
η2εxz 0 η2εzz

∣∣∣∣∣∣ . (3)

For such wave vectors, the system is perfectly symmetric around the flow axis z. We thus
have εxx = εyy ≡ ε⊥, and3 εxz = 0, so that

T(kz, kx = 0) =

∣∣∣∣∣∣
η2ε⊥ − k2 0 0

0 η2ε⊥ − k2 0
0 0 η2εzz

∣∣∣∣∣∣ . (4)

The equation T · E1 = 0 defines two kinds of waves:

• Assume (k, ω) fulfills,
ε⊥ = k2c2/ω2, (5)

then, εzz will in general not vanish for the same (k, ω). For these (k, ω), the tensor will
thus have the form,

T =

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 η2εzz 6= 0

∣∣∣∣∣∣ , (6)

and waves with with E1 ∈ (x, y) satisfy T · E1 = 0. Since k = (0, 0, kz), these are
transverse modes, k ⊥ E1. In general, they are stable.

3Less obvious, but true.
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• If we consider now (k, ω) fulfilling
εzz = 0, (7)

we find non-zero solutions of T · E1 = 0 are waves with E1 ∈ (z), as the tensor now
takes the form,

T =

∣∣∣∣∣∣
η2ε⊥ − k2 6= 0 0 0

0 η2ε⊥ − k2 6= 0 0
0 0 0

∣∣∣∣∣∣ . (8)

Since k = (0, 0, kz), these are longitudinal modes, k ‖ E1, with dispersion equation,

which indeed are our two-stream modes. It is thus checked that the modes we investi-
gated in Plasma Talk 7 do exist.

The Filamentation Instability

About the Dispersion Equation

Let’s now consider kz = 0 in Eq. (2). We find,

T =

∣∣∣∣∣∣
η2εxx 0 η2εxz

0 η2εyy − k2 0
η2εxz 0 η2εzz − k2

∣∣∣∣∣∣ , (9)

where T · E1 = 0 again defines two kinds of modes:

• Modes with E1 ∈ (y), therefore transverse since k ‖ x, with dispersion equation,

εyy = k2c2/ω2. (10)

• The Filamentation modes (at last), with E1 ∈ (x, z) and dispersion equation,

εxx(εzz − k2c2/ω2) = εxz. (11)

Of course, we would like to have εxz = 0, which would ease our life and give a simpler, two
branches dispersion equation,

εxx = 0,

εzz = k2c2/ω2. (12)

Eq. (12) has been frequently used in the literature to study the Filamentation instability4.
It defines purely transverse waves with E1 ∈ (z), that is, ‖ to the flow. The problem is that
these papers never say they assume εxz = 0. In general, they are wrong.

I wrote “in general”, because on rare occasions, they study settings for which truly, εxz = 0.
Which are they? Remember that even if we now focus on k = (kx, 0, 0), this tensor element

4See Bret et al., Phys. Plasmas, 14, 032103 (2007).
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still depends on the beam and plasma distribution functions. A detailed study5 shows εxz
strictly vanishes only if our counter streaming species are perfectly symmetric.

So, unless our density ratio is 1, and we have the same temperatures on the beam and the
plasma, the same Lorentz factors, the same. . . everything, the correct dispersion equation is
Eq. (11), not (12).

Cold Analysis - Relativistic effects

What we’ve said is so far non-relativistic. Still in the fluid model, the main relativistic effect
is displayed when linearizing the Euler equation. The relativistic Euler equation reads,

∂p

∂t
+ (v · ∇)p = q

(
E +

v ×B

c

)
, p = γmv. (13)

Its two linearized versions are,

im(k · v0 − ω)v1 = q

(
E1 +

v0 ×B1

c

)
, non− relativistic,

im(k · v0 − ω)
(
γ0v1 + γ3

0

v1 · v0

c2
v0

)
= q

(
E1 +

v0 ×B1

c

)
, relativistic. (14)

Everything is in the anisotropic linearization of γ0v around v0. We see above that for a small
motion along the flow, the relativistic mass increase goes like γ3

0 . But for small motion normal
to the flow, v1 · v0 = 0 and the mass increase only goes with γ. This of course, adds a level
of complexity to the general calculation, as Eq. (10) from Plasma Talk 8 for v1 is even more
involved.

For the filamentation instability, we have v1 · v0 = 0, and we find we can just formally
replace m→ γm. Assuming a cold beam with density nb, Lorentz factor γb, and cold plasma
electrons with density np and Lorentz factor γp, the tensor elements are6,

εxx = 1− α

x2γb
− 1

x2γp
,

εyy = 1− α

x2γb
− 1

x2γp
,

εzz = 1− α

x2γb
− αZ2

x4γb
− 1

x2γp
− α2Z2

x4γp
,

εxz =
αZ

x3γp

(
1

γp
− 1

γb

)
, (15)

with again,

x =
ω

ωpp
, Z =

kvb
ωpp

, α =
nb
np
. (16)

5Ibid.
6Ibid.
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Figure 12: Filamentation instability growth-rate for density ratios α = 1, 0.5 and 0.1, from
higher to lower curves respectively. The beam Lorentz factor is γb = 10.

The numerical resolution of Eq. (11), when plugging the tensor elements above, yields
the growth-rate curves pictured on Fig. 12. As evidenced, the growth-rate just saturates for
large Z. A trick to recover the large Z growth-rate, consists in extracting the coefficient an
of Zn in the polynomial dispersion equation, as an = 0 is the asymptotic dispersion equation
for Z →∞. Doing so, one finds a zero real frequency and

lim
Z→∞

δ

ωpp
=

vb
c

√
α

γb
, α� 1, (17)

=
vb
c

√
2

γb
, α = 1, (18)

where the agreement with Eq. (6) of Plasma Talk 8 can be checked. Note that for α = 1,
the tensor elements (15) simplify substantially. Equation (12) for unstable modes is valid and
reads,

x2 − 2

γ3
b

− 2Z2
x

x2γb
=
Z2
x

β2
, (19)

which can be solved exactly.
We can follow the same line of reasoning for the “wrong” transverse dispersion equation

(12), in order to check its inaccuracy. The exact result is for any α,

lim
Z→∞

δT
ωpp

= β

√
α(αγb + γp)

γbγp
= β

√
α(αγb + 1)

γb
, α� 1, (20)

= β

√
2

γb
, α = 1. (21)
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As expected, the result for the symmetric case α = 1 is the same. But for the diluted beam
regime α� 1, the “transverse” growth-rate δT differs from the exact one by,

δT = δ
√

1 + αγb, (22)

so that the transverse calculation overestimates the growth-rate by a factor which can be
arbitrarily large.
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10 Oblique Modes
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Figure 13: Axis conventions and setup.

The electrostatic approximation

We now come to these fast growing “oblique” modes in the relativistic regime. They are
found for both k‖ 6= 0 and k⊥ 6= 0, thus their name.

Let’s remind the general dispersion equation for a set-up like to one pictured on Fig. 13.
From Eqs. (1,2) of Plasma Talk 9, we have the dispersion equation1

det T(k, ω) = 0, (1)

with,

T =

∣∣∣∣∣∣
η2εxx − k2

z 0 η2εxz + kzkx
0 η2εyy − k2 0

η2εxz + kxkz 0 η2εzz − k2
x

∣∣∣∣∣∣ , (2)

where η = ω/c and εαβ is given by Eq. (8) of the Review Paper. We could just go on with
this expression, plug some distribution functions for the beam and the plasma, and solve the
dispersion equation. Doing so, we would realize something important for these oblique modes:
unless we’re really close the k‖ = 0, these modes have k × E ∼ 0. That had already been
noticed long ago in the first papers on the topic2, for the cold case. That’s been confirmed
recently for the hot case with various distribution functions3, but to my knowledge, it hasn’t
been proved from the formalism.

It is then fruitful to assume k× E = 0. Although this approximation breaks down for k
near the normal direction, it has so far been found valid for the fastest growing oblique mode.
The approximation is called the “electrostatic” or “longitudinal” approximation.

1There are some general symmetry requirements on the distribution function. See Review Paper.
2 Bludman et al., Phys. Fluids 3, 741 & 747 (1960). Fainberg et al., Sov. Phys. JETP 30, 528 (1970).
3Bret et al., Phys. Rev. E 70, 046401 (2004) & Phys. Rev. E 81, 036402 (2010).
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Poisson’s equation can still deliver a dispersion equation, but in a slighter intricate way
because of relativistic effects (a derivation from Ampère’s equation, similar to the filamenta-
tion one, is exposed in the Appendix). We simply go through the calculations of Plasma Talk
8 & 9, assuming at each steps k× E1 = 0, implying B1 = 0 as well.

The relativistic linearized conservation and Euler equations give for each species,

n1 = n0
k · v1

ω − k · v0

m
(
γ0v1 + γ3

0

v1 · v0

c2
v0

)
= q

(
E1 +

���
��v0 ×B1

c

)
. (3)

Solving these two equations gives for the perturbed density,

n1 = i
kzE1z + γ2kxE1x

(ω − k · v0)2
. (4)

Inputs from each species are then merged through Poisson’s equation,

k · E1 = ω2
pb

kzE1z + γ2
bkxE1x

(ω − k · v0b)2
+ ω2

pp

kzE1z + γ2
pkxE1x

(ω − k · v0p)2
, (5)

which may be put under the form W · E1 = 0, where the vector W reads,

W =

 kx
0
kz

− ω2
pb

(ω − k · v0b)2

 γ2
bkx
0
kz

− ω2
pp

(ω − k · v0p)2

 γ2
pkx
0
kz

 . (6)

Now, k ‖ E1 and W · E1 = 0, implies W · k = 0, which gives,

1− k2
z + k2

xγ
2
b

k2
z + k2

x

ω2
pb/γ

3
b

(ω − kzvb)2
−
k2
z + k2

xγ
2
p

k2
z + k2

x

ω2
pp/γ

3
p

(ω − kzvp)2
= 0. (7)

Note that in this longitudinal approximation, there are no oblique effects for γb = γp = 1.
A generalization of the result to the kinetic level is not as obvious as in the 1D theory for the
two-stream instability, precisely because we are not 1D. The kinetic equation reads4,

0 = 1 +
4πq2

k2

∫
k · ∂f0(p)/∂p

ω − k · v
d3p, p

mv√
1− v2/c2

. (8)

It should not be very difficult to derive intuitively Eq. (8) from Eq. (7) summing the beamlets
contributions, as we did for the 1D case. In terms of the usual dimensionless variables,

x =
ω

ωpp
, Z =

kvb
ωpp

, α =
nb
np
, (9)

and using vp = −αvb, Eq. (7) reads,

0 = 1− Z2
z + γ2

bZ
2
x

Z2
z + Z2

x

α/γ3
b

(x− Zz)2︸ ︷︷ ︸
beam

−
Z2
z + γ2

pZ
2
x

Z2
z + Z2

x

1/γ3
p

(x+ Zzα)2︸ ︷︷ ︸
plasma

. (10)

4The quantity equal to 0 here is called the dispersion “function”. See S. Ichimaru, Basic Principles of
Plasma Physics: A Statistical Approach, Chapter 3.
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Figure 14: LEFT: Exact growth rate from dispersion equation (18) (transparent) vs. longi-
tudinal for α = 10−2 and γb = 3. RIGHT: Same for α = 1 and γb = 1.1.

Diluted beam

For α� 1, γp ∼ 1 and Eq. (10) reads,

0 = 1− Z2
z + γ2

bZ
2
x

Z2
z + Z2

x

α/γ3
b

(x− Zz)2
− 1

(x+ Zzα)2
. (11)

This equation is very similar to the one we found for the diluted two-stream case (non-
relativistic). We formally deal with a diluted beam of equivalent density ratio,

α′ =
α

γ3
b

Z2
z + γ2

bZ
2
x

Z2
z + Z2

x

. (12)

The maximum growth rate will be found for Zz ∼ 1, and the frequency of the unstable mode
reads,

=(x) =

√
3

24/3

α1/3

γb

(
1 + γ2

bZ
2
x

1 + Z2
x

)1/3

, (13)

<(x) = 1− 1

24/3

α1/3

γb

(
1 + γ2

bZ
2
x

1 + Z2
x

)1/3

.

The growth rate (13) displays THE oblique effect: For perp components of the wave vector

such that γ2
bZ

2
x � 1, we switch from a γ−1

b to a γ
−1/3
b scaling.

The validity of the longitudinal approximation is tested on Fig. 14 where it is compared
to the exact solution. As expected, it breaks down for small Zz while the exact calculation
renders the filamentation growth rate as well.

Fixing Zz = 1, we can compare the exact solution, the longitudinal result and Eq. (13)
along the perp Zx direction. The result is displayed on Fig. 15.
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Figure 15: Comparison of the exact growth rate (top, blue curve), the longitudinal result
(lower, purple curve) and Eq. (13) [middle, yellow curve] along the perp Zx direction at fixed
Zz = 1. The density ratio is α = 0.01 and the beam Lorentz factor γb = 10.

Symmetric beams

For α = 1, γb = γp ≡ γ and Eq. (10) reads,

0 = 1− 1

(x− Zz)2Γ3
− 1

(x+ Zz)2Γ3
, Γ = γ

(
Z2
z + Z2

x

Z2
z + γ2Z2

x

)1/3

. (14)

With an equation formally equivalent to the one studied for the two-stream symmetric case
in Plasma Talk 7. Although the equation above can be exactly solved for x, studying the
fastest growing Zz for any given Zx is difficult because both are eventually inside Γ. Once the
equation is solved, we can however look at the large Zx limit of the growth rate which reads,

δ2
Zx→∞ =

1 + Z2
zγb −

√
1 + 4Z2

zγb
γb

, (15)

reaching the extremum,

δm,Zx→∞ =
1

2
√
γb
, for Zz,m =

√
3

2
√
γb
. (16)

Exact dispersion equation

Without the longitudinal approximation, and for arbitrarily oriented k’s, we are back to the
determinant of the tensor (2) for the dispersion equation. It has two branches corresponding
to the two factors of the determinant,

εyy = k2c2/ω2 , E1 ∈ (y), (17)

(η2εxx − k2
z)(η

2εzz − k2
x) = (η2εxz − kxkz)2 , E1 ∈ (x, z). (18)
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The second branch therefore holds the two-stream, the oblique and the filamentation insta-
bilities. As evidenced by the exact plot on Figs. 14, there is a continuous transition from
two-stream to filamentation modes, probably linked to a common underlying physics. Any
ideas ?

Cold hierarchy

We may finally establish the hierarchy of modes for the cold regime in the (α, γb) phase space.
The competing modes, with their variation from α� 1 to 1, are

Two− stream, =(x) =

√
3

24/3

α1/3

γb
→ 1

2γ
3/2
b

,

Oblique, =(x) =

√
3

24/3

(
α

γb

)1/3

→
√

3

2γ
1/2
b

,

Filamentation, =(x) =
vb
c

√
α

γb
→ vb

c

√
2

γb
. (19)

The Two-stream case is quickly settled: it is always slower than the oblique unless γb = 1. In
the cold regime, the two-stream instability never governs the unstable spectrum5.

We are thus left comparing oblique and filamentation modes. For the diluted regime,
the γb scaling clearly favors the oblique. Situation is more involved near the symmetric
regime. As evidenced on Fig. 14 RIGHT, the longitudinal approximation gives the good
order of magnitude for the growth rate, but is not enough to render the “fine structure” of
the problem.

What is this “fine structure”? In the diluted beam regime, we clearly have a local ex-
tremum for oblique vectors corresponding to oblique modes. When approaching the symmetric
regime, this may no longer be the case. To evidence this, we’ve plotted on Fig. 16 LEFT
the growth rate at Zx →∞ for different parameters. For α = 0.3, we clearly find an oblique
extremum, which turns to be the dominant mode. But in the symmetric case α = 1, the
local extremum disappears, giving rise to a monotonous behavior and a system governed by
filamentation.

As a consequence, the oblique/filamentation frontier has to be determined numerically
for large density ratios. The resulting hierarchy plot can be found on Fig. 16, RIGHT.
The frontier position for α = 1 can be determined exactly from the dispersion equation at
Zx → ∞. At α = 1, the equation can be solved, and the local oblique extremum vanishes
when the second derivative of the growth rate at Zz = 0 vanishes. For α 6= 1, this second
derivative vanishes on the blue line. Note the frontier gets closer to α = 1 for large γb’s, with
a convergence numerically found like γ−0.395

b .
More detailed in the Review Paper, Section IV-A.

5We’ll see later that temperature effects change this. This is why the two-stream instability can be observed
in some real systems.
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Figure 16: LEFT: Growth rate Zx → ∞ in terms of the parallel wave vector Zz, for γb = 5,
and α = 0.3 and 1 (lower and upper curves respectively). The local oblique extremum vanishes
when approaching the symmetric case. RIGHT: Dominant mode in terms of (γb, α).

Appendix

We here derive the dispersion equation (7) from Maxwell-Ampère equation. The equation we
used to merge information from each species, namely Eq. (12) from Plasma Talk 8 simplifies
in the longitudinal approximation,

���������c2

ω2
k× (k× E1) + E1 +

4iπ

ω
J1 = 0. (20)

From Eqs. (3,4), the first order current is expressed in terms of E1, leading again to a tensorial
equation of the form,

T · E1 = 0. (21)

If we have but two counter-streaming species (beam + plasma), the tensor reads6,

T =

 ω +
ω2
pb

γb(kzvb−ω)
+

ω2
pp

γp(kzvp−ω)
0 0

0 0 0

−kx
(

vbω
2
pb

γb(kzvb−ω)2
+

vpω2
pp

γp(kzvp−ω)2

)
0 ω

(
1− ω2

pb

γ3b (kzvb−ω)2
− ω2

pp

γ3p(kzvp−ω)2

)
 . (22)

The summing of elements from each species is here obvious again. Note that when k is aligned
with the main axis, that is k⊥ = 0 or k‖ = 0, the respective orientation of k and E1 is easily
determined, because E1 is also found along the very same main axis. Things are here different
because the orientation of k is arbitrary while the “easy” axis of our tensor are still the main
ones.

6Interestingly, it is not symmetric. I don’t understand why. I did check you don’t find the correct result if
you artificially add the missing element [1,3] to make it symmetric.
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Assume we have E1 fulfilling Eq. (21) and E1 ‖ k. Because T is a linear operator, that
implies T · k is also the null vector:

T · k = 0. (23)

The scalar product k · (T · k) must therefore also vanish,

k · (T · k) = 0. (24)

The advantage is that the left-hand-side of Eq. (24) is now a scalar, giving us the dispersion
equation for longitudinal waves with arbitrarily oriented k’s. That quantity can be calculated
from (22), and gives the dispersion equation (7).
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11 Temperature Effects

I will quickly go through the main temperature, i.e. energy spread effects, on our insta-
bilities. Let’s first start finding out about the limits of the cold regime.

When are we no longer “cold”?

The instability process is a matter of wave-particle interaction1. Assume a mode k is ex-
changing energy with a group of particles. If during one growth period, all particles remain
in phase with the wave, the interaction is virtually cold. The wave grows as if there was
no thermal spread at all. Writing that after one growth period, the velocity spread along k
produces a spatial spread smaller than the wavelength, we find the condition for the validity
of the cold model2,

∆vk δ
−1 � k−1, (1)

where δ is the growth rate. Note worthily, the condition is not homogenous throughout the
k space. The spread ∆vk and the growth rate both depend on k. A given system may be
virtually cold for the two-stream instability, and hot for the filamentation.

The same physical picture allows to understand the main effect of temperature. Thermal
spread reduces the growth rates, precisely because if condition (1) is not fulfilled, the wave
can exchange energy only with a fraction of the particles involved in the cold regime.

See Section III.C of the Review.

Two-stream modes

Assume a 1D beam/plasma system with a velocity distribution such as the one pictured on
Fig. 17 LEFT, and define the temperature parameter,

ρ =
Vt
V
. (2)

For ρ = 0, we have two counter-streaming symmetric beams. But it is obvious that if ρ = 1,
the two distributions make contact, and we end up with a total distribution equivalent to an
homogenous stable plasma at rest, with velocity spread equal to ±2V .

Indeed, the dispersion equation is easily computed, and reads in terms of the usual di-
mensionless parameters,

1− 1

(x+ Z)2 − (ρZ)2
− 1

(x− Z)2 − (ρZ)2
= 0. (3)

A plot of the growth rate is pictured on Fig. 17 RIGHT, evidencing the progressive stabiliza-
tion of the system for ρ approaching unity.

The same pattern holds for more realistic distribution functions. The so-called “Penrose
Criterion”3 states that distribution functions are unstable if they have more than one local

1Though there could be some issues here. See the end of the two-stream section.
2 Fainberg et al., Sov. Phys. JETP 30, 528 (1970).
3Oliver Penrose, brother of Roger Penrose, Phys. Fluids 3, 258 (1960).
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Figure 17: LEFT: Simple toy model for the stabilization of the 1D two-stream instability.
RIGHT: Growth rate in terms of Z = kV/ωp for ρ = 0, 0.9 and 0.999 from higher to lower
curves respectively. The system is stable for ρ > 1.

extremum. Bottom line: for hot enough beam and/or plasma, two-stream can be stabilized,
relativistic or not4.

Something interesting: It is tempting to relate the former criterion to the formula for
Landau Damping giving a growth rate ∝ f ′0(ω/k). Nevertheless, we find here unstable waves
with a distribution function which derivative is almost always zero5! In addition, when the
system is unstable for ρ < 1, the real part of the unstable modes is found at ω = 0, so that
f ′0(ω/k) = 0 in our case, while there are no particles at v = 0. This is not an artifact of our
distribution functions, because ω = 0 also with two counter-streaming symmetric Maxwellian
species.

I have never seen this kind of issues discussed, except in one single paper6. There are
things left to understand. . .

Filamentation modes

Let’s extend our toy model consisting in distributions flat up to a certain velocity (“wa-
terbag”). Consider the 3 distribution functions pictured on Fig. 18. The shaded areas are
uniformly filled with particles in velocity space.

• A is a counter-streaming system. Unstable to both two-stream and filamentation insta-
bilities.

• In B, we just extend the parallel spread until the distributions come in contact. Ac-
cording to the previous paragraph, the result is two-stream stable. But the result is
also anisotropic. Weibel found7 it is unstable to perturbations with k normal to the

4Buschauer, MNRAS, 137 99 (1977).
5To be more accurate, the derivative of the distribution function pictured in Fig. 17 LEFT, goes like a

Dirac’ δ for v = ±V ± Vt.
6Phys. Rev. B 43, 14009 (1991), where the problem is pointed out, but not solved.
7Weibel, Phys. Rev. Lett., 2, 83 (1959).

46



  

FLOW

Vz

Vx
C

FLOW

Vz

Vx
B

FLOW

Vz

Vx
A

Figure 18: Distribution functions with different stability properties.

highest thermal spread: that’s filamentation here. B is therefore two-stream stable and
filamentation unstable.

• C is built from B, equating the spread in every directions. The result is stable.

We thus find we can “play” with temperature parameters in order to stabilize some parts of
the spectrum, or all of it. The bottom line here is that filamentation can be stabilized.

Note that in Fig. 18, we carefully tailor the spreads of every species to cancel the instability.
What if we just play with the beam, that is, the component around vz > 0 on Fig. 18-A?
The end result depends on the distribution:

• For waterbag distributions, filamentation is stabilized beyond a certain amount of beam
transverse spread. That can be understood as follows8: Assume a current filament of
radius 1/k and density nb. The current is I ∼ qnbk

−2vb. It creates at the surface of
the filament a field B = 2I/ck−1. A charge at the surface is therefore pulled in by the
Lorentz force

FB = q
vbB

c
=
(vb
c

)2

q2nbk
−1. (4)

If there is no temperature, nothing prevents the filament from further pinching, which
is why the instability extends up to k =∞ in the cold regime. But if we’re hot, kinetic
pressure opposes the pinching: A little piece of filament near the surface, with volume
dV and surface dS, is pulled in by FBnbdV , and pushed out by nbkBTdS. Pinching is
prevented if,

nbkBTdS > FBnbdV ⇒ k > q
vb
c

√
nb
kBT

≡ km⊥ ∝
√
nb
vtb

, (5)

which is the scaling found from the theory with waterbag distributions9 (we have used
dV ∼ k−1dS, and vtb is the thermal beam spread.).

8Silva et al., Physics of Plasmas, 9, 2458 (2002).
9Bret at al., Physical Review E, 72, 016403 (2005).
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• For relativistic Maxwellians, it has been proved that filamentation never vanishes com-
pletely10. If Tb is the beam temperature, the maximum filamentation growth-rate scales
like T

−3/2
b . In addition, this result still holds for any plasma temperature.

Oblique modes - general thermal “rules”

Two-stream modes are unstable up to a finite km‖, and filamentation up to yet another
finite km⊥. How do we close the unstable domain? Two different answers according to the
distribution. With waterbag, we close from, and to infinity. See Fig. 10a of the Review.
With a Maxwellian, these large k oblique modes are stabilized, and we close “normally”, as
pictured for example on Fig. 14 of the Review.

Oblique modes’ temperature sensitivity is intermediate between two-stream and filamen-
tation. As evidenced in Plasma Talk 10, they tend to be interesting only in the relativistic
regime, due to the γb scaling which favors them. Two thermal “rules” are useful to grasp the
influence of the beam spread over the full spectrum:

• Parallel spread hardly matters. Why? Because in the relativistic regime, it takes a huge
parallel energy spread to get a reasonable parallel velocity spread. All velocities are
squeezed against c. See Fig. 13 of the Review.

• Two-stream does not care about the transverse spread, because particles differing only
by their transverse velocity will equally stay tuned with a plane wave at k ‖ flow. For
the same reason, filamentation do care.
As a result, modes are all the more affected by beam temperature than they are oblique.

We could rank, from best to worst, the 3 kinds of modes in terms of the way they “resist”
the various effects:

Relativistic: Oblique → Filamentation → two-stream.

Density ratio: Filamentation → Oblique/two-stream.

Beam temperature: Two-stream → Oblique → Filamentation.

All this ends up with the mode hierarchy pictured on Fig. 20 of the Review Paper.

The phase velocity diagram - Fig. 17 of the Review

A great tool to understand the physics. Plot, on the very same graph, the distribution
functions and the phase velocities of the unstable modes. On can straightforwardly check
which species are in resonance with which kind of modes.

10Gremillet, Unpublished, Bret et al., Physical Review E, 81, 036402 (2010),
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12 Non-Linear Regime

Figure 19: Left : The “Mandelbrot set”, defined by Eqs. (1,2). Right : Typical field growth
extracted from a PIC simulation. Growth roughly stops when the linear exponential growth
stops. The line shows the expected growth from theory.

Non-linear problems may be complicated with just 1 or 2 degrees of freedom. Think about
this 2D example: take the very simple sequence1

zn+1 = z2
n + c,

z0 = c, c ∈ C, (1)

and just define the set

M =
{
c ∈ C / lim

n→∞
| zn |6=∞

}
. (2)

You have the famous, and incredibly complicated, fractal and everything, “Mandelbrot set”
pictured on Fig. 19. People were stunned when they realized something as trivial as Eq. (1)
could generate such amount of complexity2.

A plasma has ∞ number of degrees of freedom. Yet, to my knowledge, something as
beautiful as Fig. 19 is still lacking in plasma physics. Maybe because it’s too complicated. . .

At any rate, there’s no hope of analytically finding out about the long term evolution of
our beam plasma systems in the general case. Remember it took a Fields Medal to prove
non-linear Landau damping. Even for the cold case, things are not easy.

I’ll go through some results on the saturation of the various instabilities, always assuming
the fastest growing mode is the only one excited, and that everything is cold at t = 0. The

1Non-linear in the sense that if two sequences fulfill zn+1 = z2n + c, their linear combinations do not.
2A Math-guy friend of mine once told me people would laugh at Mandelbrot, as “the guy who works on

polynomial of degree 2”!
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former is quite reasonable, as the most unstable mode grows exponentially faster than the
rest. Relativistic effects help as they drive a sharper unstable spectrum, where growth rates
vary rapidly from one mode to another. The later is a limitation.

The idea is to find out when the linear theory should break down, and to claim that
growth stops at that point. Granted, exponential growth should stop there. But other kind
of growth could keep on. Yet the observed field growth in PIC simulations is always like to
one pictured on Fig. 19. Why?

See Section V of the Review Paper, and references therein.

Two-stream and oblique instabilities

Two-stream, non-relativistic

We assume a diluted beam. There, two-stream is resonant with the beam. Say the wave
Eeikx−iωt is growing, traveling along with the beam electrons. Electrons will start oscillating
in the field at the “bouncing” frequency3,

ω2
b =

qEk

m
. (3)

The linear assumption that all electrons have v = vb during one growth period δ−1 breaks
down when,

ωb = δ ⇒ Es =
δ2

ωp

mvb
q
, (4)

giving the value of the field at saturation (I’ve set here k ∼ ωp/vb). A great by-product of Es
is the beam energy loss ∆Wb. Since the field energy can only come from the beam energy, we
can write,

∆Wb

1
2
nbmv2

b

=
E2
s/8π

1
2
nbmv2

b

(5)

=
np
nb

(
δ

ωp

)4

∼
(
nb
np

)1/3

,

where I just replaced the growth-rate by its cold value
√

3
24/3

(nb/np)
1/3ωp. We could even write

the energy lost is shared between the plasma and the field4. In such case, ∆Wb/Wb is half
the result (5).

As the field grows and traps the beam electrons, they start oscillating in the wave potential.
PIC people love to plot density graphs in the (x, vx) phase-space (say x is our dimension)
such as the one pictured on Fig. 20. At t = 0, the beam and the plasma are just two lines. In
the instability phase, the plasma does not move a lot, but the beam particles start oscillating
in the wave, creating “holes” in the phase-space.

3See Plasma Talk 5 on Landau damping.
4Lorenzo Sironi told me you see this in the PICs. But why?
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Figure 20: Phase-space hole.

Two-stream, Relativistic

A naive reasoning gives the right answer. As the oscillatory trapping motion is along the flow,
we replace m→ γ3

bm in the bouncing frequency (3). This gives the field at saturation5,

Es =
δ2

ωp

γ3
bmvb
q

. (6)

The relative energy loss is then computed as in Eq. (5), replacing the growth-rate by its
relativistic value. It reads,

∆Wb

nbγbmc2
∼ γbβ

2

(
nb
2np

)1/3

. (7)

Of course, this quantity has to remain small since linear regime means unperturbed trajecto-
ries, that is, ∆Wb � Wb. The energy loss eventually relies on the parameter S with6

S = γbβ
2

(
nb
2np

)1/3

. (8)

If you do the “clean” calculation going to the wave frame, like in the footnote, you need the
beam dynamic in that frame to be non-relativistic in order to compute easily a bouncing

5Let’s denote quantities in the wave frame with a prime. If the beam dynamic in the wave frame is
non-relativistic, we have

ω′2b =
qEk′

m
,

where the field E does not need prime as it is parallel to the motion. The bouncing frequency in the lab frame
is simply ωb = ω′b/γb. In addition, k = γbk

′ since in the wave frame, ω′ = 0. We thus find

ω2
b =

qEk

γ3bm
,

retrieving the m→ γ3bm “rule”.
6See Review Paper.
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frequency. Doing so requires S � 1, as explained in the Review. For arbitrary S’s, one has

∆Wb

Wb

∼ S

(S + 1)5/2
, (9)

yielding a maximum energy loss in the linear phase

∆Wb

Wb max

=
6

25

√
3

5
∼ 0.18 for S =

2

3
. (10)

Oblique instability

Poorly known. What is known is that Eq. (9) roughly works until S ∼ 0.45. For larger S’s,
∆Wb/Wb seems quite insensitive to S, and remains around 0.18 given by Eq. (10).

Filamentation instability

There are 3 different ways to evaluate the field at saturation!

1. Cyclotron frequency = growth rate. Filamentation instability grows magnetic
field. Such field B affects particles on a time scale given by the cyclotron frequency,

ωc =
qB1

γbmc
. (11)

Writing again that the linear regime keeps on until ωc = δ, we get,

Bs1 =
γbmc

q
δ. (12)

If one tries to compute the relative energy loss
B2
s1

8π
/nbγbmc

2, the cold result gives a
factor of order β2, without any more scaling in γb, and almost none in α = nb/np (see
Table 1). The conclusion is that estimating the energy loss requires a finer calculation
than this one, and that the result is quite stable in terms of these variables.

2. Bouncing frequency = growth rate. Historically, the field at saturation has rather
been evaluated this way. With v0b = (0, 0, vb) and k = (kx, 0, 0), the growing magnetic
field reads B1 = (0, B1 sin kxx, 0). At first order, Newton’s law projected on the x axis
gives,

γbm
d2x

dt2
= qB1

vb
c

sin kxx. (13)

Particles at x ∼ 0 oscillate at,

ω2
b =

qB1vbkx
γbmc

. (14)

Note that we assumed there’s only a B field here. We know that unless the system is
strictly symmetric, it’s wrong. Here again, we can claim exponential growth keeps on
while the motion is almost unperturbed, that is until

qB1vbkx
γbmc

= δ2 ⇒ Bs2 =
γbmc

q

δ2

vbkx
. (15)
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Criteria Bs Bs, mcωp/q units ∆Wb/Wb

Cyclotron frequency = growth-rate γbmc
q
δ β[α(α + 1)γb]

1/2 β2(α + 1)/2

Bouncing frequency = growth-rate γbmc
q

δ2

vbkx
βα(α + 1) β2α(α + 1)2/2γb

Larmor radius = characteristic k−1
c

γbmc
q
v0kc βγb β2γb/2α

Table 1: Summary of the 3 ways to evaluate the field at saturation Bs for the filamentation
instability, considering k⊥ = ωp/c. Results for the cold case. Taking k⊥ ∝ γ

−1/2
b , the 3 criteria

give the same scaling for α = 1 [1].

Comparing Eqs. (15,12) gives,

Bs2 = Bs1
δ

vbkx
, (16)

so that both estimates give the same result only with kx = δ/vb. For example, with the
symmetric cold case where δ = ωpβ

√
2/γb, that implies

kx =
ωp
c

√
2

γb
. (17)

For non-relativistic setting, the kx is the typical expected one. For γb, very recent cold
PIC’s [1] found indeed that it is the fastest growing k⊥. Why exactly, as the cold growth
sate juste saturates at large k⊥’s?

3. Larmor radius = characteristic 1/k⊥. Equating the Larmor radius of an electron
in a field B to the characteristic kc of the insta gives,

Bs3 =
γbmc

q
v0kc = Bs1

v0kc
δ
. (18)

The 3 results are summarized in Table 1, considering the cold symmetric case, and taking
k = ωp/c for the typical k⊥. Taking k⊥ ∝ γ

−1/2
b , the 3 criteria give the same scaling for α = 1

[1].

Fate of the filaments

Opposite filaments repel, but like filaments attract. In our 3D world, filaments turn around
each other, and like filaments merge. The merging process has been modeled, and successfully
simulated with PICs7.

More realistic settings, successive instabilities

We’ve been so far interested in the short term evolution of the system, that is, the end of the
linear phase. What’s next? I’ll just comment Fig. 40 of the Review Paper. The initial setup
was:

7Medvedev et al., The Astrophysical Journal 618, L75 (2005).
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Beam: Maxwellian, nb = np/10, γb = 3, Tb = 50 keV.
Plasma: Maxwellian, Tp = 5 keV.

• 0 < ωpt < 80: System initially governed by oblique modes. E field grows at 0.07ωp.
Heating “kills” de oblique.

• 80 < ωpt < 160: System switches to a two-stream regime. E field grows at 0.016ωp.
Heating “kills” two-stream.

• 200 < ωpt < 600: Remaining drift feeds filamentation. B field grows at 0.005ωp.

By the end of the simulation ωpt ∼ 600, the beam had lost about 30% of its energy,
entirely transferred to plasma electrons. Open questions:

• Is filamentation the necessary end state of every initial setup?

• Does the drift eventually ends (in the frame of the fixed ion background)? That is, is
the drift energy eventually converted at 100% into heat? Sounds reasonable. Is that
sure?

Indeed, the interesting question might be how long does it take?

References

[1] A. Bret et al., Submitted to Physics of Plasmas, (2012).
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13 Ohm’s law and the Biermann battery

The original 1950 paper is Ref. [1], “Über den Ursprung der Magnetfelder auf Sternen und
im interstellaren Raum”, published in Zeitschrift Naturforschung Teil A. Cited more than 200
times, and probably read by no one but the happy few who 1) read German and 2) could
access it.

� The MHD equations are formed from the fluid equations for electrons and ions (dropping
subindices),

∂n

∂t
+

∂

∂r
· (nv) = 0,

mn

(
∂v

∂t
+ v · ∂v

∂r

)
= qn

(
E +

v

c
×B

)
−∇p+ nmg. (1)

The MHD variables are defined from ne,i(r, t),ve,i(r, t) as1,

ρ(r, t) = mini +mene,

J(r, t) = qnivi − qneve,

V(r, t) =
1

ρ(r, t)
(nemeve +minivi).

Merging the fluid Euler equations for both species gives,

ρ

(
∂V

∂t
+ V · ∂V

∂r

)
=

J

c
×B−∇(

P︷ ︸︸ ︷
pi + pe) + ρg. (2)

Ohm’s law is the equation giving the current J. Where does it come from? What we did
in Plasma Talk 3 was to follow the basic, “business as usual” procedure: sit in the frame of
the fluid locally at V. There, the electric field is E′. Ohm’s law gives the current in the lab
frame from E′, as J′ = σE′. Because E′ = E + V×B/c, we get the famous (non-relativistic)

J = σ

(
E +

V

c
×B

)
. (3)

What about J′ = σE′? It arises from the microscopic picture that under the action of
an electric field, particles, mostly electrons, are accelerated in the direction of the field, while
collisions with the ions act like a friction force2. Writing something like m∂tv = qE′ − νv
where ν is some collision frequency, and setting ∂t = 0, indeed yields v = q

ν
E′ and then

J′ = qn q
ν
E′. Ideal MHD assumes ν = 0, giving

E′ = E +
V

c
×B = 0. (4)

1In Plasma Talk 3, the MHD velocity V was defined through (me + mi)V = meve + mivi. Most books
[2, 3] present definition (2) above. It is more rigorous, as it gives a ρV MHD term exactly equal to the total
momentum. At any rate, the difference between the two quantities is ∝ (ne − ni)(ve − vi). This is a second
order quantity in the MHD regime, where electrons are expected to closely follow the ions, so that ne ∼ ni
and ve ∼ vi.

2Solid state physics call this the “Drude model”, from Paul Drude, who came up with this idea in 1900.
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Figure 21: How a finite size shock can generate non-parallel density and temperature (hence
pressure) gradients. From [4], p. 406.

� But we inadvertently assumed many things. For example, ∂t = 0 assumes E′ varies
slowly enough with time. If variations are too fast, the stationary regime does not have
enough time to set in, and some ω dependency appears. Also, we assumed particles are
accelerated only by E′ between two collisions. What if B is strong enough to curve the
trajectories in between? In this case, the resistivity in the direction normal to the field is
higher (×1.9) than along the field ([2] p. 28, or [4] p. 43).

Since conductivity comes from the electrons3, let’s write their full Euler equation,

mene

(
∂ve
∂t

+ ve ·
∂ve
∂r

)
= qene

(
E +

ve
c
×B

)
−∇pe − ν(ve − vi). (5)

Neglecting the left-hand-side for the small electrons inertia, and setting ν = 0 for ideal MHD
yields,

E +
ve
c
×B =

∇pe
qene

. (6)

According to Kulsrud [4] p. 405, the pressure term above is negligible when there is a B field.
WHY? But for small B’s, or even B = 0, you need to keep it. Inserting the electric field
above in ∂tB = −c∇× E and setting ve ∼ V gives4,

∂B

∂t
= ∇× (V ×B) + c

∇ne ×∇pe
qn2

e

. (7)

The second term is our Biermann Battery. There’s no B in there, so that it can make it from
nothing. Still, the microscopic derivation shows we need ionization, just to be able to create
electronic currents moved by the electronic pressure.

� But, an equation of state usually gives pe(ne). The gradients for pe and ne are thus

3The σ of J′ = σE′ has the mass on the denominator.
4We need a little drag between ions and electrons to write ve ∼ V.
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likely to be parallel, so that the cross product vanishes. How do we break this? Several
possibilities,

1. Try a system in rotation around z, with Ω(z). The pressure gradient reads ∇P ∝
Ω2(z)ρ(r, θ). It has a z component, while ∇ρ(r, θ) has not. Those who’ve read the
paper say Biermann considered this option.

2. Try the scheme of Figure 21. Suppose a finite size shock travels through a cold, diluted
upstream. The downstream just behind the shock is dense and hot. Far downstream
though, the plasma expands but remains warm, so that it is now warm and diluted.
The figure shows well how this can generate non-parallel density and temperature (hence
pressure) gradients. A non-spherical shock also does the job for similar reasons.

Everything is easily adapted to a system partially ionized. If nn is the density of the
neutral, define χ = ne/(ni + nn). Eq. (7) can be adapted dividing the Battery term by 1 + χ
([4], p. 406). See [7].

Kulsrud proposed this mechanism to produce Cosmic Fields from scratch in 1997 [5]. Yet,
he co-authored in 1992 another paper [6] advocating spontaneous plasmas fluctuations.

Also Khanna [8], showed that a rotating BH in a plasma will always generate toroidal and
poloidal magnetic fields.

Ref. [9] studied the Biermann Battery effects in Cosmological MHD Simulations of Pop-
ulation III Star Formation. In its own terms, “We find that the Population III stellar cores
formed including this effect are both qualitatively and quantitatively similar to those from
hydrodynamics-only (non-MHD) cosmological simulations”. No dynamical effects.

The Biermann battery mechanism was successfully tested in the lab in 2012 [10].
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